The operating principles

- and the functions of active
and passive ring laser gyros
are examined first.

Part I, appearing next
month, will take up
fiber-optic gyros.

he principle of operation of the
Toptical gyroscope, first discussed by

Sagnac [1], is conceptually very
simple, although several significant engi-
neering challenges had to be overcome
before practical implementation was
possible. In fact, it was not until the
demonstration of the helium-neon laser
at Bell Labs in 1960 that Sagnac’s discov-
ery took on any serious implications; the
first operational ring laser gyro was devel-
oped by Warren Macek of Sperry Corp.
just two years later [2]. Navigational
quality ring laser gyroscopes were intro-
duced into routine service in inertial
navigation systems for the Boeing 757
and 767 in the early 1980s, and over half
a million navigation systems have been
installed in Japanese automobiles since
1987, many of which use fiber-optic gyro-
scopes [3]. Numerous technological im-
provements since Macek’s first proto-
type have made the optical gyro one of
the most promising sensors likely to sig-
nificantly influence mobile robot naviga-
tion in the near future.

The basic device consists of two laser
beams traveling in opposite directions
(i.e., counterpropagating) around a
closed-loop path. The constructive and
destructive interference patterns formed
by splitting off and mixing a portion of
the two beams can be used to determine
the rate and direction of rotation of the
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device itself. Schulz-
DuBois [4] idealized the
ring laser as a hollow
doughnut-shaped mir-
ror, wherein light fol-
lows a closed circular
path. Assuming an
ideal 100% reflective
mirror surface, the opti-
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cal energy inside the
cavity is theoretically
unaffected by any rota-
tion of the mirror itself. The counter-
propagating light beams reinforce each
other to create a stationary standing
wave of intensity peaks and nulls (see
Figure 1), regardless of whether the gyro
is rotating [2].

A simple visualization based on the

w.Schulz-DuBois idealization will help
explain the fundamental concept of op-

eration before embarking on a more de-
tailed treatment of the subject. The light
and dark fringes of the nodes are some-
what analogous to the reflective stripes
or slotted holes in the rotating disk of an
incremental optical encoder and can the-
oretically be counted in similar fashion
by an optical pickoff mounted on the
cavity wall [5]. (In this analogy, however,
the standing-wave “disk” is actually fixed
in the inertial reference frame, while the
normally stationary “detector” revolves
around it.) With each full rotation of the
mirrored doughnut, the detector would
see a number of node peaks equal to
twice the optical path length of the
beams divided by the wavelength of the
light. For a 632.8 nm HeNe wavelength
in a typical 2.4-in.-dia. closed path, there
are 300,000 wavelengths and hence
600,000 nodes, yielding over half a mil-
lion counts per revolution [5].

Obviously, there is no practical way to
implement this theoretical arrangement

Figure 1. Counterpropagating light beams create a standing wave in this
idealized ring laser gyro. (Adapted from [2])

because there is no such thing as a per-
fect mirror. Furthermore, the introduc-
tion of light energy into the cavity (as
well as the need to observe and count
the nodes on the standing wave) would
interfere with the mirror’s performance,
should such an ideal capability exist.
However, numerous practical embodi-
ments of optical rotation sensors have
been developed for use as rate gyros in
navigational applications. Five general
configurations will be discussed:

¢ Active optical resonators

o Passive optical resonators

* Open-loop fiber-optic interferome-
ters (analog) ,

¢ Closed-loop fiber-optic interferome-
ters (digital)

¢ Fiber-optic resonators

Aronowitz [6], Menegozzi and Lamb
[7], Chow et al. [8], Wilkinson [9], and
Udd [10] provide in-depth discussions of
the theory of the ring laser gyro and its
fiber-optic derivatives. A comprehensive
overview of the technologies and an ex-
tensive bibliography of preceding works
are presented by Ezekiel and Arditty
[11]. An excellent treatment of the sali-
ent features, advantages, and disadvan-
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tages of ring laser gyros vs. fiber-optic
gyros is presented by Udd [10,12].

ACTIVE RING LASER GYROS

The active optical resonator configura:
tion, more commonly known as the ring
laser gyro, solves the problem of intro-
ducing light into the doughnut by filling
the cavity itself with an active lasing me-
dium, typically helium-neon. There are
actually two beams generated by the
laser that travel around the ring in oppo-
site directions. If the gyro cavity is
caused to physically rotate in the coun-
terclockwise direction, then the counter-
clockwise-propagating beam will be
forced to traverse a slightly longer path
than it would under stationary condi-
tions. Similarly, the clockwise-propagat-
ing beam will see its closed-loop path
shortened by an identical amount. This
phenomenon, known as the Sagnac
effect, in essence changes the length of
the resonant cavity.

The magnitude of this change is given
by the equation [8]:
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where:

AL = change in path length
radius of the circular beam
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path
€ = angular velocity of rotation
¢ = speed of light.

Note that the change in path length is
directly proportional to the rotation rate
Q of the cavity. To measure gyro rota-
tion, some convenient means must there-
fore be established to quantify the associ-
ated change in the optical path length.

This requirement, to measure minute
differences in optical path lengths, is
where the invention of the laser in the
early 1960s provided the needed techno-
logical breakthrough that allowed Sag-
nac’s observations to be put to practical
use. For lasing to occur in a resonant
cavity, the roundtrip beam path must be
precisely equal in length to an integral
number of wavelengths at the resonant
frequency. This means the wavelengths
(and hence the frequencies) of the two
counterpropagating beams must change,
as only oscillations with wavelengths sat-
isfying the resonance condition can be
sustained in the cavity.

The frequency difference between the

two beams is given by [8]:
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where:
Af = frequency difference
A = wavelength

In practice, a doughnut-shaped ring
cavity would be hard to realize. For an
arbitrary cavity geometry, the expression
becomes [§]:

4AQ

A= G)
where:
A = area enclosed by the closed-
loop beam path

P = perimeter of the beam path

For single-axis gyros, the ring is gener-
ally formed by aligning three highly re-
flective mirrors to create a closed-loop
triangular path (see Figure 2, page 57).
(Some systems, such as Macek’s early
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Figure 2. A typical three-mirror configuration of the
single-axis ring laser gyro incorporates dual anodes to
cancel the biasing effects of induced Langmuir flow
in the laser medium. (Adapted from [12])

prototype, use four mirrors to create a
square path.) The mirrors are usually
mounted to a monolithic glass-ceramic
block with machined ports for the cavity
bores and electrodes. The most stable
systems use linearly polarized light and
minimize circularly polarized compo-
nents to avoid magnetic sensitivities [2].
The approximate quantum noise limit is
due to spontaneous emission in the gain
medium [11], representing the best-case
scenario of the five general gyro configu-
rations outlined earlier.

As shown in Figure 2, dual anodes are

gencerdlly mcorporated to A
overcome Doppler shifts
attributed to the otherwise
moving medium within
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the center of the discharge
tube and toward the anode
along the walls. This phe-
nomenon is known as
Langmuir flow; the laser
radiation, being predomi-
nately along the tube centerline, thus ex-
periences a net motion in the medium
itself [8]. The opposed dual-anode con-
figuration introduces a reciprocity in the
Langmuir flow that cancels the overall
effect, provided the anode currents are
kept precisely equal.

The fundamental disadvantage associ-
ated with the active ring laser is a prob-
lem called frequency lock-in, which
occurs at low rotation rates when the
counterpropagating beams “lock” to-
gether in frequency [13]. This phenom-
enon is attributed to constrictions or
periodic modulation of the gain medium,

Figure 3. Frequency lock-in due to a small amount of backscatter from
the mirror surfaces results in a zero-output deadband region (A) at low
rotational velocities. The application of mechanical dither breaks the
deadband region up into smaller fragments (B) that occur at input rates
equal to harmonics of the dither frequency @y (Adapted from [2])

in conjunction with the influence of a
very small amount of backscatter from
the mirror surfaces [12]. The result is a
small deadband region (below a certain
threshold of rotational velocity) for which
there is no output signal (see Figure 3A).
Above the lock-in threshold, output
approaches the ideal linear response
curve in a parabolic fashion.

The most obvious way to solve this
problem is to improve the quality of the
mirrors, thereby reducing the resulting
backscatter. Again, however, perfect
mirrors do not exist, and some finite
amount of backscatter will always be
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tive value of 10-*2 the power of the main
beam, enough to induce frequency lock-
in for rotational rates of several hundred
degrees per hour in a typical gyro with a
20-cm perimeter. A more practical tech-
nique is to incorporate some type of
biasing scheme to shift the operating
point away from the deadband zone.
Mechanical dithering is the least elegant
but most common and effective biasing
method, introducing the obvious disad-
vantages of increased system complexity

ing parts. The entire gyro assembly is
rotated back and forth about the sensing
axis in an oscillatory fashion (+100 arc-
seconds at 400 Hz typical), with the
resulting response curve shown in Figure
3B (page 57). State-of-the-art dithered ac-
tive ring-laser gyros have a scale factor
linearity that far surpasses the best me-
chanical gyros. Dithered biasing, un-
fortunately, is too slow for high-perform-
ance systems (e.g., flight control), re-
sulting in oscillatory instabilities [2]. Me-
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Figure 4. This passive ring resonator gyro has a laser
source external to the ring cavity, eliminating prob-
lems peculiar to active gyros. (Adapted from [10])

chanical dithering can also introduce
crosstalk between axes on a multiaxis sys-
tem, although some of the unibody
three-axis gyros use a common dither
axis to eliminate this possibility [2].

Buholz and Chodorow [14], Chesnoy
[15], Christian and Rosker [16]), and
Dennis et al. [17] discuss the use of ex-
tremely short-duration laser pulses (typi-
cally /15 of the resonator perimeter in
length) to reduce the effects of fre-
quency lock-in at low rotation rates. The
basic idea is to minimize the cross cou-
pling between the two counterpropagat-
ing beams by limiting the regions in the
cavity where the two pulses overlap. Wax
and Chodorow [18] report a two order of
magnitude improvement in performance
through the use of intracavity phase
modulation. Other techniques based on
nonlinear optics have been proposed
[12], including an approach by Litton
that applies an external magnetic field to
the cavity to create a directionally depen-
dent phase shift for biasing [2]. Yet an-
other solution to the lock-in problem is to
remove the lasing medium from the ring
altogether, effectively forming what is
known as a passive ring resonator.

PASSIVE RING
RESONATOR GYROS

The passive ring resonator gyro makes
use of a laser source external to the ring
cavity (see Figure 4), and thus circum-
vents the frequency lock-in problem that
arises when the gain medium is internal
to the cavity itself. The passive configura-
tion also eliminates problems arising from
changes in the optical path length within
the interferometer due to variations in
the index of refraction of the gain
medium [8]. The theoretical quantum
noise limit is determined by photon shot
noise and is slightly higher (i.e., worse)
than the theoretical limit seen for the
active ring laser gyro [11].

Classical implementations of mirrored

e
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active ring predecessors suffered from
inherently bulky packaging in compari-
son to the alternatives offered by fiber-
optic technology. These fiber-optic de-
rivatives also promise the additional ad-
vantage of longerlength multiturn reso-
nators for increased sensitivity in smal-
ler, rugged, and less expensive packages.
As a consequence, the resonant fiber-
optic gyro (RFOG), to be discussed in
Part II, has emerged as the most popular
of the resonator configurations [19].
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