

Machine Learning for Navy Applications

NDIA Fall Defense and Industry Forum 24 October 2017

Dr. Katie Rainey SPAWAR Systems Center Pacific krainey@spawar.navy.mil

Machine learning is critical to SPAWAR's strategic vision

"[The] era of precision and observation is giving way to an era of **competition for decision**. The sensors are now omnipresent, the positioning information is embedded, so now the competition is to orienting, finding a way through that information, and making a decision."

CNO Admiral Richardson, Naval War College, June 2017

http://www.public.navy.mil/spawar/News/Pages/StrategicVision.aspx

Machine Learning at SSC Pacific

Machine Learning Center of Excellence

Computer Vision

Bio-Inspired Systems

Data Analytics

Autonomous Systems

Cyber Autonomy

Supervisory Autonomy

What makes machine learning hard for the Navy?

- 1. Data
- 2. Computing Environment
- 3. Trust

Navy data is noisy, sparse, and unstructured

Chinese aircraft carrier in South China Sea. DigitalGlobe

Navy data is noisy, sparse, and unstructured

Vehicles in desert environment. DVIDS

Navy data is noisy, sparse, and unstructured

Sepal length +	Sepal width +	Petal length +	Petal width +	Species +
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.3	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa
4.4	2.9	1.4	0.2	I. setosa
4.9	3.1	1.5	0.1	I. setosa
5.4	3.7	1.5	0.2	I. setosa
4.8	3.4	1.6	0.2	I. setosa
4.8	3.0	1.4	0.1	I. setosa
4.3	3.0	1.1	0.1	I. setosa
5.8	4.0	1.2	0.2	I. setosa
5.7	4.4	1.5	0.4	I. setosa
5.4	3.9	1.3	0.4	I. setosa
5.1	3.5	1.4	0.3	I. setosa

Fisher's Iris dataset. Wikipedia

Service outage heat map.

What makes machine learning hard for the Navy?

- 1. Data
- 2. Computing Environment
- 3. Trust

The Navy has challenging computing environments

- ▼ Disconnected, Intermittent, and Limited (DIL) environments
- ▼ Legacy systems
- ▼ Data silos
- Multiple classification domains
- ▼ Unique human-machine interface requirements

DVIDS

What makes machine learning hard for the Navy?

- 1. Data
- 2. Computing Environment
- 3. Trust

Trust in the system is at least as important as the system itself

- ▼ Human-in-the-Loop vs Human-on-the-Loop
- Consequences when system is wrong
- ▼ Understandable failure
- Ethics of automation

When exploring machine learning for Navy applications...

- Use representative data
- Consider the system's capabilities and limitations
- Remember the user

Workshop on Naval Applications of Machine Learning 2018

- ▼ 13-15 February, 2018, San Diego, California
 - Tentatively: two days S&T focused, one day operationally focused
 - Short technical talks and poster sessions
 - Dr. Guna Seetharaman (ST, NRL) scheduled as keynote speaker
 - Panel discussions on collaboration efforts / other topics
 - Potential for classified sessions / meetings
- ▼ Open to government, industry, academia
- ▼ Now accepting abstracts until Nov. 12, 2017

Email mlworkshop@spawar.navy.mil for more info

THANK YOU

Dr. Katie Rainey SPAWAR Systems Center Pacific krainey@spawar.navy.mil