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P Machine learning is critical to SPAWAR’s
XA strategic vision

PACIFIC

INFORMATION WARFARE
Seabed to Space

“[The] era of precision and observation
IS giving way to an era of competition
Network s for decision. The sensors are now

Communications omnipresent, the positioning

| information is embedded, so now the
competition is to orienting, finding a
way through that information, and
making a decision.”

y Cyber
' Security

W CNO Admiral Richardson, Naval War
arfare -
Systems College, June 2017

http://www.public.navy.mil/spawar/News/Pages/StrategicVision.aspx
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¥ Machine Learning at SSC Pacific

PACIFIC
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‘ Cyber Autonomy ‘

\ Data Analytics / Supervisory Autonomy /
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P What makes machine learning hard for
& theN avy?

PACIFIC

1. Data
2. Computing Environment
3. Trust
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sewz Navy data IS noisy, sparse, and
’ unstructured

Chinese aircraft carrier in South China Sea. DigitalGlobe
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sewz Navy data IS noisy, sparse, and
’ unstructured
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Vehicles in desert environment. DVIDS
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sewz Navy data IS noisy, sparse, and
’ unstructured

Sepal length ¢ Sepal width ¢ | Petal length ¢ | Petal width # | Species #

& N g S8y 9 ; TP ;
w B [ £ 3 ., EsH 5= 5 8 rﬁm 2
5.1 35 1.4 0.2 I. setosa 3 % ngﬁﬁ o mE £ Umgt: ggég b §m ESQ';‘}' " Eﬁgzg
49 3.0 14 02 I. setosa euBzBagsEafEazZe.  Op CEEQNisE  EHREUnEuRi TlnsglEr
s o2 - ) e R B e REE PR R R R R P P T
- - . . . Sglosa i
USS TARAWA
USS BLUE RIDGE
4.8 3.1 15 0.2 I. setosa rhimptoborrr
USS RENTZ
5.0 3.6 1.4 0.3 I. setosa USS BUNKER HILL B
5.4 39 1.7 0.4 I. setosa uss GERE?"T'E%'& . Hk # B
4.6 3.4 14 0.3 I. setosa UUSSSSPB;:IR@’Dg_Er i e 2 B
5.0 3.4 15 0.2 I. setosa LSS SALT LAKE CIT... USS GERMANTOWN &
USS LOUISVILLE il ADNS m
4.4 2.8 1.4 0.2 I. setosa USS BREMERTON i
USS ABRAHAM LINCO... 2 events
4.9 3.1 15 0.1 I. setosa USS MUSTIN
USS COLUMBIA 5
5.4 3.7 15 0.2 I. setosa USS MCCAMPBELL
USS GARY u|
4.8 3.4 16 0.2 I. setosa USS PORT ROYAL
USS JOHN C. STENN...
4.8 3.0 1.4 0.1 I. setosa USS HARPERS FERRY m
USS PRINCETON m
4.3 3.0 1.1 0.1 I. setosa USS VINCENNES
USS JARRETT B
5.8 4.0 1.2 0.2 1. setosa USS RONALD REAGAN
USS MCCLUSKY
57 4.4 1.5 0.4 I. setosa USS PREBLE B &
5.4 3.9 13 0.4 I. setosa ik R ot -
USS BONHOMME RICH... O
5.1 3.5 1.4 0.3 I. setosa LSS HODDER -
. , . . . .
Fisher’s Iris dataset. \Wikipedia Service outage heat map.
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P What makes machine learning hard for
& theN avy?
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1. Data
2. Computing Environment
3. Trust
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sz The Navy has challenging computing
& environments

PACIFIC

V¥ Disconnected, Intermittent, and Limited (DIL) environments
V¥ Legacy systems

V¥ Data silos

V¥ Multiple classification domains

V¥ Unigue human-machine interface requirements

DVIDS
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sPawn TrUSt In the system Is at least as
XA Important as the system itself

PACIFIC

¥ Human-in-the-Loop vs Human-on-the-Loop
V¥ Conseguences when system is wrong

¥ Understandable failure

V¥ Ethics of automation
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smwk \When exploring machine learning for

K4 Navy applications
y app

PACIFIC

V¥ Use representative data
V¥ Consider the system’s capabilities and limitations
¥ Remember the user
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smwk \Norkshop on Naval Applications of

¥ Machine Learning 2018

PACIFIC

V¥ 13-15 February, 2018, San Diego, California
= Tentatively: two days S&T focused, one day operationally focused
= Short technical talks and poster sessions
= Dr. Guna Seetharaman (ST, NRL) scheduled as keynote speaker
= Panel discussions on collaboration efforts / other topics
= Potential for classified sessions / meetings

V¥ Open to government, industry, academia

V¥ Now accepting abstracts until Nov. 12, 2017

Email mlworkshop@spawar.navy.mil for more info
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THANK YOU

Dr. Katie Rainey
SPAWAR Systems Center Pacific
krainey@spawar.navy.mil
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