

1-4244-1513-06/07/$25.00 (c)2007 IEEE 1 of 8
Statement A: Approved for public release; Distribution is unlimited.

JOINT TACTICAL RADIO SYSTEM - APPLICATION PROGRAMMING INTERFACES

Cinly Magsombol, Chalena Jimenez, Donald R. Stephens
Joint Program Executive Office, Joint Tactical Radio Systems Standards

San Diego, CA

ABSTRACT
In April 2007, the Joint Program Executive Office
(JPEO) Joint Tactical Radio System (JTRS) released 15
Application Programming Interfaces (APIs) to the
Software Communications Architecture (SCA) website
[1]. The release of these APIs will allow for the public
distribution, implementation, and collaboration with
commercial software vendors, universities, and
international programs. The APIs contained in this first
release provide common API building utilities, I/O
interfaces supporting data/voice processing, and an
abstraction for the modem hardware. This release is the
result of efforts to promote and encourage portability
and reusability within the software defined radio
community.

INTRODUCTION
The standardization of APIs is essential to the overall

JPEO JTRS goals of software portability and reusability.
APIs facilitate application portability and reuse by
providing a defined and documented host environment
across all JTR platforms. JTRS APIs specify the
language/semantics that guarantee that a waveform
application and service on the set can communicate
regardless of the implementation details (i.e., different
languages or operating environment) of the JTR
component. This allows applications developed on one
platform to be reused on another platform of different
size, mission, or deployment. A common API also
delineates the components responsibility between the
waveform and platform minimizing any duplication of
effort.

The JTR infrastructure reuse model is shown in
Figure 1. It is expected that all JTRS products available
from the JPEO Information Repository (IR) (waveform
and operating environment software) utilize these
defined APIs to reduce costs, discovery, code rework,
and improve product deliveries.

Portability and reuse are heavily dependent on the
proper specification of the interface. The development
of an interface that is too set specific or incompatible
with the existing code base would require additional
waveform modifications when porting. Initial API
standardization involved balancing the need to provide

APIs that were backward compatible with the existing
code base while ensuring the APIs were scalable and
extensible to the various form factors and missions.

Operating
Environment

Software

Modifications and JTR
Set-Unique Operating

Environment

JPEO JTRS
Information
Repository

Standardized
JTR Set

Interfaces

Waveforms
Standardized

Waveform
Interfaces

Waveform Porting to
JTR Set

JTRS Standards
and APIs

JTR Set in
JTRS Family of Radios

Figure 1 JTR Infrastructure Reuse Model

JTRS API DEFINITION
The first JTRS APIs evolved from the software code

base that was available from the JPEO IR. Early
examination of this code base identified candidate APIs
that were common across waveform developments.
Other available interfaces were JTRS set specific and
were not selected for standardization. The decision was
to leverage this knowledge base and specify APIs that
were backwards compatible to these products.

JTRS Standards acknowledged a need for specifying
flexible APIs that would accommodate varying form
factors and missions. Specifically, it was desired to
provide a rich set of services for larger platforms while
not burdening smaller resource constrained platforms.
Toward this goal, JTRS Standards has defined the
concept of API extensions. API extensions are one of
many design patterns developed for the APIs defined in
“Design Patterns of JTRS Infrastructure” [2]. It
categorizes the specific capabilities within a specified
API as a “base” or an “extension”. The API “base”
specifies the minimum behavior needed for all JTRS
platforms while API extensions identify additional (or
optional) capabilities that can be used by larger

2 of 8
Statement A: Approved for public release; Distribution is unlimited.

platforms. For example, the Vocoder Service provides a
“base” capability for the control and transfer encoded
data. It also defines “extension” capabilities to support
different vocoders (e.g. MELP, CVSD, LPC). Platforms
requiring a Vocoder Service would implement the base
only those extensions required.

JTRS API STRUCTURE
API documents provide a complete definition of the

waveform to platform Interface Description Language
(IDL) for the specified service (e.g. JTR set application
component). JTR platform specific interfaces have not
been defined and will be part of the service specific
design. The service definition delineates what is to be
provided by the service from the service user (e.g.
waveform) and describes all service interfaces, methods,
input and output parameters, data types, and error
signals. Where applicable, sequence diagrams have been
documented and included to clarify certain call
behaviors.

To minimize the number of documents, base APIs
and extensions are collocated within the same document.
Base APIs are defined in section ‘A’ with API
extensions following with section ‘B’ and beyond.
There can be zero or more extensions for each API.

JTRS API MANAGEMENT
The JPEO recognized the importance of involving

the JTRS community and utilizing developed knowledge
in the creation of JTR APIs. They also understood that
new APIs must be developed and be capable of evolving
as new technologies and missions emerge. To foster and
manage APIs, the JPEO created the JTRS Standards
Interface Control Working Group (ICWG) to serve as
the technical and decision-making authority on the
development and configuration management of all JTRS
standards including APIs. Members of the ICWG
include participants from across the JTRS enterprise.
ICWG activities include the approval of all individual
standards and the disposition of change requests on
existing standards. It is a tenet of the ICWG to ensure
that all standards are based upon mature use cases,
follow defined processes, and consider the impact of
these standards on the entire JTRS community.

APIS WITHIN THE JTRS INFRASTRUCTURE
APIs are a subset of the specifications and standards

that make up the entire JTRS infrastructure. Other
public specifications include the Software
Communication Architecture [3]. The collection of the
JTRS APIs deployed on the JTRS infrastructure is
illustrated in Figure 2. JTRS APIs fall into broad

categories consisting of primitive APIs, radio devices,
and radio services.

Waveform
Component

GPP

Waveform
Component

SCA
Core Framework

Ethernet
Device

Ethernet
Hardware

Device

Serial Port
Device

Serial Port
Hardware

Device

MHAL
Device

RF Amplifier

Cosite
Resource

Antenna
Resource

MHAL
Interface

DSP and FPGA

Waveform
Component

Audio Port
Device

Audio Port
Hardware

Device
Vocoder
Service

MHAL DSP
Library

MHAL FPGA
Library

Primitive APIs
-Packet
-Device IO
-Device Message Control
-JTRS CORBA Types

Figure 2 JTRS Infrastructure

Primitive APIs are a set of basic data types and data
transfer interfaces that are common to a number of APIs.
APIs requiring these utilities will use/inherit these
types/interfaces in their design. This promotes reuse and
design commonality between the different APIs.
Primitive APIs are documented independently to avoid
redefining their functionality in each API document.
Figure 3 provides an example use of a primitive API.
The VocoderPacketProducer and
VocoderPacketConsumer interfaces (from Vocoder
Service API) inherit the primitive Packet API interfaces
for pushing octet packets. The Vocoder Services does
not need to redefine these interfaces.

PayloadControl

setMaxPayloadSize()
setMinPayloadSize()
setDesiredPayloadSize()
setMinOverrideTimeout()

(from Packet)

<<Interface>>

VocoderPacketProducer
(from Vocoder)

<<Interface>>
VocoderPacketConsumer

(from Vocoder)

<<Interface>>

OctetStream

pushPacket()

(from Packet)

<<Interface>>

PayloadStatus

getMaxPayloadSize()
getMinPayloadSize()
getDesiredPayloadSize()
getMinOverrideTimeout()

(from Packet)

<<Interface>>

Figure 3 Vocoder Service Primitive Interfaces

3 of 8
Statement A: Approved for public release; Distribution is unlimited.

A generic radio device is depicted in Figure 4. Radio
devices provide a software abstraction for physical
hardware devices. Radio devices expose a JTRS
standard CORBA-based API to the user (e.g. waveform
component) and abstract the hardware specific details
from the waveform. The native device platform-side
API is defined by the set for its particular architecture
and mission.

Waveform
Component

Radio Device

GPP

JTRS
Device API

Native
Device API

Hardware
Device

Figure 4 Radio Devices

Radio services provide functionality that is common
to a number of software components. Unlike radio
devices, they are not tied to specific hardware resources
on the set.

JTRS PRIMITIVE APIS

JTRS CORBA Types
JTRS CORBA Types provide a set of common JTRS

types that are defined in a common JTRS product wide
namespace. It is the intention that JTRS CORBA Types
be used by JTRS APIs. The standard provides a
collocated set of the common unbounded sequence types
that are equivalent to the superset found in the SCA
“Cf.idl” and “PortTypes.idl” files. This set does not
include floating point types since it is recommended that
they should be limited in JTRS APIs and avoided on
resource restricted platforms. JTRS CORBA Types also
define the JTRS extensible enumeration type which was
defined to allow for the extensibility of additional
enumerated values [2]. Lastly, this set includes common
error exceptions related to the inclusion of the extensible
enumeration types within an operation.

Packet API

The JPEO has standardized two sets of packet
interfaces. The Packet API was designed as the
preferred extensible packet interface to be used in future
APIs. The older packet interfaces listed below are
provided to maintain compatibility with legacy devices
such as the Ethernet Device. These interfaces provide

similar but less extensible capabilities and are not
recommended for future designs. The older packet
interfaces will be maintained until they are no longer
required by legacy devices.

§ Device Packet
§ Device Packet Signals
§ Device Simple Packet
§ Device Simple Packet Signals

The Packet API defines the basic building blocks for
component messaging. It defines a common set of data
transfer and control interfaces that can be used by
component JTRS APIs such as the Audio Port Device.
The majority of inter-component data communications
are accomplished using these messaging interfaces.

Packet interfaces are based on the data producer and
consumer model shown in Figure 5. As illustrated, data
is sourced at the data producer and consumed at the data
consumer. A component can be a data producer or a
data consumer depending whether it is producing or
consuming data.

Figure 5 Data Producer and Consumer

The Packet API base provides methods to push
packets of common data types to the device or service
user. Packets are accompanied by a structure that
identifies and sequences the streams provided. The base
also provides other methods to negotiate packet payload
sizes and delivery timeouts provided in Figure 6.

Figure 6 Base Packet Interfaces

4 of 8
Statement A: Approved for public release; Distribution is unlimited.

The Flow Control extension and Empty Signals
extensions provide added mechanisms to control and
monitor the data stream defined in the base. These
interfaces may be used in conjunction with other
interfaces to create the device/service data producer and
data consumer interfaces. The Flow Control Extension
provides the ability to send flow controlled data to/from
the device or service user. Data is controlled by either
polling for space availability or waiting for a signal to
resume. The Empty Signal Extension provides the
ability to indicate when a specified stream has been
processed.

DeviceIo API
As with the Packet API, the DeviceIo API is also

accompanied by older interfaces. DeviceIo contains a
repackaging of the standards below to provide a
common namespace and reduce the number of
supporting documents. The interfaces below are
provided to maintain compatibility and are not
recommended for future designs. The older interfaces
will be maintained until they are no longer required by
legacy devices.

§ Device IO Signals
§ Device IO Control

The DeviceIo interfaces provide methods to enable a
handshake before sending data. Specifically, these
interfaces activate Request to Send (RTS) and Clear to
Send (CTS) signals. The DeviceIo interfaces may be
used in association with the Packet API interfaces to
create the component data producer and data consumer
interfaces.

Device Message Control API
Device Message Control is the last of the common

utilities released in this first set of APIs. This interface
provides methods to monitor the communication in the
transmit or receive direction. It also provides the ability
to abort the transmission.

JTRS DEVICES

Audio Port Device
The AudioPort Device is a radio device that supports

methods and attributes that are specific to the audio
hardware it represents. The base AudioPort Device
provided in Figure 7 provides operations to generate and
control alert/alarm tones within an audio stream and to
notify the device user of a Push-To-Talk (PTT) event.

The AudioSampleStream extension extends the
functionality of the base to provide the ability to

consume and control audio samples to/from the audio
hardware. The AudioSampleStream audio stream
capability is accomplished by inheriting from the packet
interfaces described in the Packet API.

Figure 7 Base Audio Port Device

Serial Port Device
The Serial Port Device is another radio device which

supports the operation and configuration of serial port
hardware devices. The Serial Port Device base provides
the ability to generate and consume serial packets
to/from the serial port device. The Serial Port Device
base also provides a base configuration interface to
select the specific synchronization mode to exercise,
shown in Figure 8.

Figure 8 Base Serial Port Device

The Asynchronous, Synchronous Raw and
Synchronous HDLC extensions extend the functionality
of the base to support the configuration of each
synchronization configuration type. Each extension
provides a configuration interface that allows the user to
set and retrieve the configuration for the specified
synchronization configuration type. Figure 9 provides
an example of the Synchronous Raw extension.

5 of 8
Statement A: Approved for public release; Distribution is unlimited.

SyncRaw

+setSyncRawConfig()
+getSyncRawConfig()

(from SerialPort)

<<Interface>>

SyncClockControlType

+RTS_CTS
+FREE_RUNNING

(from SyncRaw)

<<CORBAEnum>>

SyncRawConfigType

+enableAutoBaud : boolean
+baudRate : unsigned long
+enableRtsCts : boolean
+enableCdpMode : boolean

(from SyncRaw)

<<CORBAStruct>>

+clockCtrl

ClockSources

+DCE
+DTE

(from SyncRaw)

<<CORBAEnum>>

+txClockSource

Figure 9 Synchronous Raw Extension

Ethernet Device
The Ethernet Device abstracts the Ethernet hardware

from the device user. It consists solely of a base which
provides operations to generate and consume ethernet
packets to and from the ethernet hardware. As with
other devices, data transfer is achieved through
inheritance of the common packet interfaces. However,
unlike the other APIs, the Ethernet Device relies on the
older Packet and DeviceIo interfaces.

MHAL Device

The MHAL device abstracts the waveform application
from the specifics of the JTR modem hardware. It also
supports communications between waveform
components hosted on different computational elements
(CEs) (e.g. General Purpose Processors (GPPs), Modem
Digital Signal Processors (DSPs) and/or Modem Field
Programmable Gate Arrays (FPGAs)). Figure 10 shows
a reference deployment of the MHAL. The MHAL API
does not specify the number of computational elements a
JTR platform will provide. It also does not specify the
platform specific transport, implementation or hardware
architecture. What the MHAL does specify is a defined
and consistent method for routing messages between
each CE. It achieves this through the definition MHAL
interfaces and structures.
Error! Objects cannot be created from editing field codes.
Figure 10 MHAL API Reference Deployment Diagram

The MHAL base defines the common MHAL message
structure depicted in Figure 11. This message structure
includes the information required to maintain an orderly
processing of message buffers across CEs. Specifically,
the MHAL structure specifies an In-Use (IU) bit for
internal message flow control, the logical destination
(e.g. end user) for the message, the payload to be sent,
and the message length. It is important to note that the
payload is an opaque message that is passed by the JTR

set’s transport mechanism to the peer MHAL
communication node.

Figure 11 Standard Message Structure for MHAL

Communication

The MHAL GPP extension is a CORBA-based device
interface documented in IDL. It provides a defined and
consistent interface to the waveform for access to one of
the other CEs. The CORBA API for the MHAL is
illustrated in Figure 12. As with the other APIs, data
transfer is based on the packet interfaces and defines a
pushPacket operation as well as operations for setting
and getting message routes. CORBA-capable processors
may utilize this interface for sending MHAL messages
between processing elements.

PayloadStatus

getMaxPayloadSize()
getMinPayloadSize()
getDesiredPayloadSize()
getMinOverrideTimeout()

(from Packet)

<<Interface>>

MHALPacketConsumer

pushPacket()

(from MHAL)

<<Interface>>

PF_MHALPacketConsumer

addTxRoute()

(from MHAL)

<<Interface>>
WF_MHALPacketConsumer

getRxRoutes()

(from MHAL)

<<Interface>>

Figure 12 CORBA MHAL API

The concept for defining an infrastructure on the
DSP and FPGA processors was similar to that of the
MHAL GPP. Because the DSP environment does not
readily support dynamic linkable objects, the MHAL
interface on the DSP is a library of standardized
components that are linked into the waveform code at
build time. The API for the DSP extension is illustrated

6 of 8
Statement A: Approved for public release; Distribution is unlimited.

in Figure 13. MHAL DSP messages are serviced through
the function MHAL_Comm(). This is equivalent to
pushPacket() defined in the GPP MHAL extension. This
C-level interface defines functions that communicate
with other processor elements using the standardized
MHAL messages.

Figure 13 MHAL DSP Extension

The MHAL FPGA extension consists of FPGA entity
libraries that are linked into a waveform build. In the
FPGA interfaces, a receive node contains a signal
interface that is asserted when a complete message is
received. The JTR set’s interfaces to the FPGA nodes
are set-specific. The FPGA entities illustrated in Figure
14 are provided by the JTR set developer and compiled
into the waveform’s FPGA bit image. As with
traditional APIs, not all waveforms will utilize all of the
entities shown and the bit image will contain only the
FPGA node resources required.

Figure 14 MHAL FPGA Extension

The MHAL APIs defined in the previous paragraphs
allow detailed programming of the modem and RF
capabilities using basic MHAL messages. To provide a
higher-level abstraction of JTR set capabilities, the
MHAL Chain Coordinator extension API is defined with

common functions expected of modems and power
amplifiers. In Figure 15, the Chain Coordinator API
provides functions such as channel frequency
(RFC_ChannelFrequency) and receiver automatic gain
control (AGC) that control (RFC_RxAGCAttackTime)
which increases programming abstraction and
subsequently, portability of waveform software.

Figure 15 MHAL Chain Coordinator Extension

JTRS SERVICES

Vocoder Service

The Vocoder Service is the single radio service defined
in this first release. It provides common voice
encoding/decoding capabilities to application
components. As depicted in Figure 16, the Vocoder
Service base defines the transfer of raw bit streams
between the application and the service. It also provides
operations to control the bit stream. Specifically, this
control supports loop back operations, provides for the
query and the selection specific algorithms, and provides
an option to abort the transmit stream.

Ctrl

+getLoopback()
+setLoopback()
+getAlgorithmsSupported()
+getTxAlgorithm()
+getRxAlgorithm()
+setTxAlgorithm()
+setRxAlgorithm()
+abortTx()

(from Vocoder)

<<Interface>>

VocoderPacketConsumer
(from Vocoder)

<<Interface>>

VocoderPacketProducer
(from Vocoder)

<<Interface>>

Figure 16 Base Vocoder Service

7 of 8
Statement A: Approved for public release; Distribution is unlimited.

The Vocoder Service is extended for the specific
algorithms types used to encode/decode the voice
stream. The Vocoder Service currently supports
Continuously Variable Slope Delta (CVSD), Mixed
Excitation Linear Predictive (MELP), Linear Predictive
Coding (LPC), and Speex, which is based upon CELP
(Code Excited Linear Prediction). The individual
algorithms are defined as extensions and provide the
capability to query and configure the algorithm selected.
Similar to the Serial Port Device synchronization
configuration type extensions, the Vocoder Service
algorithm type extensions provide methods to configure
and get the current configuration. The interfaces and
associated configuration structure for the MELP
extension is shown in Figure 17. It should be noted that
the Speex extension does not have a defined interface
since it does not require specialized configuration
services.

Figure 17 MELP Extension

The last extension in the Vocoder Service is the
Vocoder Audio Stream extension. This extension
provides an explicit connection of the service to the
Audio Port Device to transfer audio samples as
illustrated in Figure 18. The standard also allows for a
JTR set defined connection to the audio port device.
This is permitted to support legacy implementations
which may have coupled the Vocoder Service and Audio
Port Device in their design.
Error! Objects cannot be created from editing field codes.
Figure 18 Explicit Connections to Audio Port Device

EXAMPLE API COLLABORATION DIAGRAM

Figure 19 illustrates an example interaction between a
radio service or device and its user, using the defined
interfaces and operations. In this example, the Vocoder
Service provides encoded data to the Service User (i.e.
waveform). The Service User selects CVSD as the
transmit algorithm by calling the setTxAlgorithm
operation defined in the Ctrl interface. When data is
available (from the data source), the Vocoder Service
will encode that data using the CVSD algorithm and
pass it to the Service User by calling the pushPacket
method defined in the VocoderPacketConsumer
interface.

Data
Source

Vocoder
Service

Service User
(i.e. waveform)

1: Ctrl::setTxAlgorithm(ALG_CVSD);

2: Recieve data

3: Encode data

4: VocoderPacketConsumer::pushPacket();
Figure 19 Vocoder Service Collaboration Diagram

SUMMARY
The development of JTRS APIs was a collaborative
effort based on design methodologies to allow the
portability of application software and interchangeability
of platform services. The current release consists of 5
component APIs and a number of primitive APIs. This
paper provided a summary of each API included in this
release, reviewed their origins, and discussed their
importance to JTRS. It is expected that additional APIs
will be released in the future to promote portability and
reuse.

REFERENCES
[1] Software Communications Architecture Website,
http://jtrs.spawar.navy.mil/sca
[2] Stephens, D. R., “Design Patterns of JTRS
Infrastructure”, MILCOM 2007.
[3] JTRS Standards, “Software Communication
Architecture”, Version 2.2.2., May 15, 2006.

http://jtrs.spawar.navy.mil/sca

