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ABSTRACT 
In April 2007, the Joint Program Executive Office 
(JPEO) Joint Tactical Radio System (JTRS) released 15 
Application Programming Interfaces (APIs) to the 
Software Communications Architecture (SCA) website 
[1]. The release of these APIs will allow for the public 
distribution, implementation, and collaboration with 
commercial software vendors, universities, and 
international programs.  The APIs contained in this first 
release provide common API building utilities, I/O 
interfaces supporting data/voice processing, and an 
abstraction for the modem hardware. This release is the 
result of efforts to promote and encourage portability 
and reusability within the software defined radio 
community. 

INTRODUCTION 
The standardization of APIs is essential to the overall 

JPEO JTRS goals of software portability and reusability.  
APIs facilitate application portability and reuse by 
providing a defined and documented host environment 
across all JTR platforms.  JTRS APIs specify the 
language/semantics that guarantee that a waveform 
application and service on the set can communicate 
regardless of the implementation details (i.e., different 
languages or operating environment) of the JTR 
component.  This allows applications developed on one 
platform to be reused on another platform of different 
size, mission, or deployment.  A common API also 
delineates the components responsibility between the 
waveform and platform minimizing any duplication of 
effort. 

The JTR infrastructure reuse model is shown in 
Figure 1.  It is expected that all JTRS products available 
from the JPEO Information Repository (IR) (waveform 
and operating environment software) utilize these 
defined APIs to reduce costs, discovery, code rework, 
and improve product deliveries. 

Portability and reuse are heavily dependent on the 
proper specification of the interface.  The development 
of an interface that is too set specific or incompatible 
with the existing code base would require additional 
waveform modifications when porting.  Initial API 
standardization involved balancing the need to provide 

APIs that were backward compatible with the existing 
code base while ensuring the APIs were scalable and 
extensible to the various form factors and missions. 
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Figure 1 JTR Infrastructure Reuse Model 

JTRS API DEFINITION 
The first JTRS APIs evolved from the software code 

base that was available from the JPEO IR.  Early 
examination of this code base identified candidate APIs 
that were common across waveform developments.  
Other available interfaces were JTRS set specific and 
were not selected for standardization.  The decision was 
to leverage this knowledge base and specify APIs that 
were backwards compatible to these products. 

JTRS Standards acknowledged a need for specifying 
flexible APIs that would accommodate varying form 
factors and missions.  Specifically, it was desired to 
provide a rich set of services for larger platforms while 
not burdening smaller resource constrained platforms.  
Toward this goal, JTRS Standards has defined the 
concept of API extensions.  API extensions are one of 
many design patterns developed for the APIs defined in 
“Design Patterns of JTRS Infrastructure” [2].  It 
categorizes the specific capabilities within a specified 
API as a “base” or an “extension”.  The API “base” 
specifies the minimum behavior needed for all JTRS 
platforms while API extensions identify additional (or 
optional) capabilities that can be used by larger 
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platforms.  For example, the Vocoder Service provides a 
“base” capability for the control and transfer encoded 
data.  It also defines “extension” capabilities to support 
different vocoders (e.g. MELP, CVSD, LPC).  Platforms 
requiring a Vocoder Service would implement the base 
only those extensions required. 

JTRS API STRUCTURE 
API documents provide a complete definition of the 

waveform to platform Interface Description Language 
(IDL) for the specified service (e.g. JTR set application 
component).  JTR platform specific interfaces have not 
been defined and will be part of the service specific 
design.  The service definition delineates what is to be 
provided by the service from the service user (e.g. 
waveform) and describes all service interfaces, methods, 
input and output parameters, data types, and error 
signals.  Where applicable, sequence diagrams have been 
documented and included to clarify certain call 
behaviors. 

To minimize the number of documents, base APIs 
and extensions are collocated within the same document.  
Base APIs are defined in section ‘A’ with API 
extensions following with section ‘B’ and beyond.  
There can be zero or more extensions for each API. 

JTRS API MANAGEMENT 
The JPEO recognized the importance of involving 

the JTRS community and utilizing developed knowledge 
in the creation of JTR APIs.  They also understood that 
new APIs must be developed and be capable of evolving 
as new technologies and missions emerge.  To foster and 
manage APIs, the JPEO created the JTRS Standards 
Interface Control Working Group (ICWG) to serve as 
the technical and decision-making authority on the 
development and configuration management of all JTRS 
standards including APIs.  Members of the ICWG 
include participants from across the JTRS enterprise.  
ICWG activities include the approval of all individual 
standards and the disposition of change requests on 
existing standards.  It is a tenet of the ICWG to ensure 
that all standards are based upon mature use cases, 
follow defined processes, and consider the impact of 
these standards on the entire JTRS community. 

APIS WITHIN THE JTRS INFRASTRUCTURE 
APIs are a subset of the specifications and standards 

that make up the entire JTRS infrastructure.  Other 
public specifications include the Software 
Communication Architecture [3].  The collection of the 
JTRS APIs deployed on the JTRS infrastructure is 
illustrated in Figure 2.  JTRS APIs fall into broad 

categories consisting of primitive APIs, radio devices, 
and radio services. 
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Figure 2 JTRS Infrastructure 

Primitive APIs are a set of basic data types and data 
transfer interfaces that are common to a number of APIs.  
APIs requiring these utilities will use/inherit these 
types/interfaces in their design.  This promotes reuse and 
design commonality between the different APIs.  
Primitive APIs are documented independently to avoid 
redefining their functionality in each API document.  
Figure 3 provides an example use of a primitive API.  
The VocoderPacketProducer and 
VocoderPacketConsumer interfaces (from Vocoder 
Service API) inherit the primitive Packet API interfaces 
for pushing octet packets.  The Vocoder Services does 
not need to redefine these interfaces. 

PayloadControl

setMaxPayloadSize()
setMinPayloadSize()
setDesiredPayloadSize()
setMinOverrideTimeout()

(from Packet)

<<Interface>>

VocoderPacketProducer
(from Vocoder)

<<Interface>>
VocoderPacketConsumer

(from Vocoder)

<<Interface>>

OctetStream

pushPacket()

(from Packet)

<<Interface>>

PayloadStatus

getMaxPayloadSize()
getMinPayloadSize()
getDesiredPayloadSize()
getMinOverrideTimeout()

(from Packet)

<<Interface>>

 
Figure 3 Vocoder Service Primitive Interfaces 
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A generic radio device is depicted in Figure 4.  Radio 
devices provide a software abstraction for physical 
hardware devices.  Radio devices expose a JTRS 
standard CORBA-based API to the user (e.g. waveform 
component) and abstract the hardware specific details 
from the waveform.  The native device platform-side 
API is defined by the set for its particular architecture 
and mission. 
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Figure 4 Radio Devices 

Radio services provide functionality that is common 
to a number of software components.  Unlike radio 
devices, they are not tied to specific hardware resources 
on the set. 

JTRS PRIMITIVE APIS 

JTRS CORBA Types 
JTRS CORBA Types provide a set of common JTRS 

types that are defined in a common JTRS product wide 
namespace.  It is the intention that JTRS CORBA Types 
be used by JTRS APIs.  The standard provides a 
collocated set of the common unbounded sequence types 
that are equivalent to the superset found in the SCA 
“Cf.idl” and “PortTypes.idl” files.  This set does not 
include floating point types since it is recommended that 
they should be limited in JTRS APIs and avoided on 
resource restricted platforms.  JTRS CORBA Types also 
define the JTRS extensible enumeration type which was 
defined to allow for the extensibility of additional 
enumerated values [2].  Lastly, this set includes common 
error exceptions related to the inclusion of the extensible 
enumeration types within an operation. 

Packet API  

The JPEO has standardized two sets of packet 
interfaces.  The Packet API was designed as the 
preferred extensible packet interface to be used in future 
APIs.  The older packet interfaces listed below are 
provided to maintain compatibility with legacy devices 
such as the Ethernet Device.  These interfaces provide 

similar but less extensible capabilities and are not 
recommended for future designs.  The older packet 
interfaces will be maintained until they are no longer 
required by legacy devices. 

§ Device Packet 
§ Device Packet Signals 
§ Device Simple Packet 
§ Device Simple Packet Signals 

The Packet API defines the basic building blocks for 
component messaging.  It defines a common set of data 
transfer and control interfaces that can be used by 
component JTRS APIs such as the Audio Port Device.  
The majority of inter-component data communications 
are accomplished using these messaging interfaces.   

Packet interfaces are based on the data producer and 
consumer model shown in Figure 5.  As illustrated, data 
is sourced at the data producer and consumed at the data 
consumer.  A component can be a data producer or a 
data consumer depending whether it is producing or 
consuming data. 

 
Figure 5 Data Producer and Consumer 

The Packet API base provides methods to push 
packets of common data types to the device or service 
user.  Packets are accompanied by a structure that 
identifies and sequences the streams provided.  The base 
also provides other methods to negotiate packet payload 
sizes and delivery timeouts provided in Figure 6. 

 
Figure 6 Base Packet Interfaces 
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The Flow Control extension and Empty Signals 
extensions provide added mechanisms to control and 
monitor the data stream defined in the base.  These 
interfaces may be used in conjunction with other 
interfaces to create the device/service data producer and 
data consumer interfaces.  The Flow Control Extension 
provides the ability to send flow controlled data to/from 
the device or service user. Data is controlled by either 
polling for space availability or waiting for a signal to 
resume.  The Empty Signal Extension provides the 
ability to indicate when a specified stream has been 
processed. 

DeviceIo API 
As with the Packet API, the DeviceIo API is also 

accompanied by older interfaces.  DeviceIo contains a 
repackaging of the standards below to provide a 
common namespace and reduce the number of 
supporting documents. The interfaces below are 
provided to maintain compatibility and are not 
recommended for future designs.  The older interfaces 
will be maintained until they are no longer required by 
legacy devices. 

§ Device IO Signals 
§ Device IO Control 

The DeviceIo interfaces provide methods to enable a 
handshake before sending data.  Specifically, these 
interfaces activate Request to Send (RTS) and Clear to 
Send (CTS) signals.  The DeviceIo interfaces may be 
used in association with the Packet API interfaces to 
create the component data producer and data consumer 
interfaces. 

Device Message Control API 
Device Message Control is the last of the common 

utilities released in this first set of APIs.  This interface 
provides methods to monitor the communication in the 
transmit or receive direction.  It also provides the ability 
to abort the transmission. 

JTRS DEVICES 

Audio Port Device  
The AudioPort Device is a radio device that supports 

methods and attributes that are specific to the audio 
hardware it represents.  The base AudioPort Device 
provided in Figure 7 provides operations to generate and 
control alert/alarm tones within an audio stream and to 
notify the device user of a Push-To-Talk (PTT) event. 

The AudioSampleStream extension extends the 
functionality of the base to provide the ability to 

consume and control audio samples to/from the audio 
hardware.  The AudioSampleStream audio stream 
capability is accomplished by inheriting from the packet 
interfaces described in the Packet API. 

 
Figure 7 Base Audio Port Device 

Serial Port Device 
The Serial Port Device is another radio device which 

supports the operation and configuration of serial port 
hardware devices.  The Serial Port Device base provides 
the ability to generate and consume serial packets 
to/from the serial port device.  The Serial Port Device 
base also provides a base configuration interface to 
select the specific synchronization mode to exercise, 
shown in Figure 8. 

 
Figure 8 Base Serial Port Device 

The Asynchronous, Synchronous Raw and 
Synchronous HDLC extensions extend the functionality 
of the base to support the configuration of each 
synchronization configuration type.  Each extension 
provides a configuration interface that allows the user to 
set and retrieve the configuration for the specified 
synchronization configuration type.  Figure 9 provides 
an example of the Synchronous Raw extension. 
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SyncRaw

+setSyncRawConfig()
+getSyncRawConfig()

(from SerialPort)

<<Interface>>

SyncClockControlType

+RTS_CTS
+FREE_RUNNING

(from SyncRaw)

<<CORBAEnum>>

SyncRawConfigType

+enableAutoBaud : boolean
+baudRate : unsigned long
+enableRtsCts : boolean
+enableCdpMode : boolean

(from SyncRaw)

<<CORBAStruct>>

+clockCtrl

ClockSources

+DCE
+DTE

(from SyncRaw)

<<CORBAEnum>>

+txClockSource

 
Figure 9  Synchronous Raw Extension 

Ethernet Device 
The Ethernet Device abstracts the Ethernet hardware 

from the device user.  It consists solely of a base which 
provides operations to generate and consume ethernet 
packets to and from the ethernet hardware.  As with 
other devices, data transfer is achieved through 
inheritance of the common packet interfaces.  However, 
unlike the other APIs, the Ethernet Device relies on the 
older Packet and DeviceIo interfaces. 

MHAL Device 

The MHAL device abstracts the waveform application 
from the specifics of the JTR modem hardware.  It also 
supports communications between waveform 
components hosted on different computational elements 
(CEs) (e.g. General Purpose Processors (GPPs), Modem 
Digital Signal Processors (DSPs) and/or Modem Field 
Programmable Gate Arrays (FPGAs)).  Figure 10 shows 
a reference deployment of the MHAL.  The MHAL API 
does not specify the number of computational elements a 
JTR platform will provide.  It also does not specify the 
platform specific transport, implementation or hardware 
architecture.  What the MHAL does specify is a defined 
and consistent method for routing messages between 
each CE.  It achieves this through the definition MHAL 
interfaces and structures.   
Error! Objects cannot be created from editing field codes. 
Figure 10 MHAL API Reference Deployment Diagram 

The MHAL base defines the common MHAL message 
structure depicted in Figure 11.  This message structure 
includes the information required to maintain an orderly 
processing of message buffers across CEs.  Specifically, 
the MHAL structure specifies an In-Use (IU) bit for 
internal message flow control, the logical destination 
(e.g. end user) for the message, the payload to be sent, 
and the message length.   It is important to note that the 
payload is an opaque message that is passed by the JTR 

set’s transport mechanism to the peer MHAL 
communication node. 

 
Figure 11 Standard Message Structure for MHAL 

Communication 

The MHAL GPP extension is a CORBA-based device 
interface documented in IDL.  It provides a defined and 
consistent interface to the waveform for access to one of 
the other CEs.  The CORBA API for the MHAL is 
illustrated in Figure 12.  As with the other APIs, data 
transfer is based on the packet interfaces and defines a 
pushPacket operation as well as operations for setting 
and getting message routes.  CORBA-capable processors 
may utilize this interface for sending MHAL messages 
between processing elements.  

PayloadStatus

getMaxPayloadSize()
getMinPayloadSize()
getDesiredPayloadSize()
getMinOverrideTimeout()

(from Packet)

<<Interface>>

MHALPacketConsumer

pushPacket()

(from MHAL)

<<Interface>>

PF_MHALPacketConsumer

addTxRoute()

(from MHAL)

<<Interface>>
WF_MHALPacketConsumer

getRxRoutes()

(from MHAL)

<<Interface>>

 
Figure 12 CORBA MHAL API 

The concept for defining an infrastructure on the 
DSP and FPGA processors was similar to that of the 
MHAL GPP.  Because the DSP environment does not 
readily support dynamic linkable objects, the MHAL 
interface on the DSP is a library of standardized 
components that are linked into the waveform code at 
build time.  The API for the DSP extension is illustrated 
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in Figure 13.  MHAL DSP messages are serviced through 
the function MHAL_Comm().  This is equivalent to 
pushPacket() defined in the GPP MHAL extension.  This 
C-level interface defines functions that communicate 
with other processor elements using the standardized 
MHAL messages. 

 

 
Figure 13 MHAL DSP Extension 

The MHAL FPGA extension consists of FPGA entity 
libraries that are linked into a waveform build.  In the 
FPGA interfaces, a receive node contains a signal 
interface that is asserted when a complete message is 
received.  The JTR set’s interfaces to the FPGA nodes 
are set-specific.  The FPGA entities illustrated in Figure 
14 are provided by the JTR set developer and compiled 
into the waveform’s FPGA bit image.  As with 
traditional APIs, not all waveforms will utilize all of the 
entities shown and the bit image will contain only the 
FPGA node resources required. 

 
Figure 14 MHAL FPGA Extension 

The MHAL APIs defined in the previous paragraphs 
allow detailed programming of the modem and RF 
capabilities using basic MHAL messages.  To provide a 
higher-level abstraction of JTR set capabilities, the 
MHAL Chain Coordinator extension API is defined with 

common functions expected of modems and power 
amplifiers.  In Figure 15, the Chain Coordinator API 
provides functions such as channel frequency 
(RFC_ChannelFrequency) and receiver automatic gain 
control (AGC) that control (RFC_RxAGCAttackTime) 
which increases programming abstraction and 
subsequently, portability of waveform software.   
 

 
Figure 15 MHAL Chain Coordinator Extension 

JTRS SERVICES 

Vocoder Service 

The Vocoder Service is the single radio service defined 
in this first release.  It provides common voice 
encoding/decoding capabilities to application 
components.  As depicted in Figure 16, the Vocoder 
Service base defines the transfer of raw bit streams 
between the application and the service.  It also provides 
operations to control the bit stream.  Specifically, this 
control supports loop back operations, provides for the 
query and the selection specific algorithms, and provides 
an option to abort the transmit stream. 

Ctrl

+getLoopback()
+setLoopback()
+getAlgorithmsSupported()
+getTxAlgorithm()
+getRxAlgorithm()
+setTxAlgorithm()
+setRxAlgorithm()
+abortTx()

(from Vocoder)

<<Interface>>

VocoderPacketConsumer
(from Vocoder)

<<Interface>>

VocoderPacketProducer
(from Vocoder)

<<Interface>>

 
Figure 16 Base Vocoder Service 
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The Vocoder Service is extended for the specific 
algorithms types used to encode/decode the voice 
stream.  The Vocoder Service currently supports 
Continuously Variable Slope Delta (CVSD), Mixed 
Excitation Linear Predictive (MELP), Linear Predictive 
Coding (LPC), and Speex, which is based upon CELP 
(Code Excited Linear Prediction).  The individual 
algorithms are defined as extensions and provide the 
capability to query and configure the algorithm selected.  
Similar to the Serial Port Device synchronization 
configuration type extensions, the Vocoder Service 
algorithm type extensions provide methods to configure 
and get the current configuration.  The interfaces and 
associated configuration structure for the MELP 
extension is shown in Figure 17.  It should be noted that 
the Speex extension does not have a defined interface 
since it does not require specialized configuration 
services. 

 
Figure 17 MELP Extension 

The last extension in the Vocoder Service is the 
Vocoder Audio Stream extension.  This extension 
provides an explicit connection of the service to the 
Audio Port Device to transfer audio samples as 
illustrated in Figure 18.  The standard also allows for a 
JTR set defined connection to the audio port device.  
This is permitted to support legacy implementations 
which may have coupled the Vocoder Service and Audio 
Port Device in their design. 
Error! Objects cannot be created from editing field codes. 
Figure 18  Explicit Connections to Audio Port Device 

EXAMPLE API COLLABORATION DIAGRAM 

Figure 19 illustrates an example interaction between a 
radio service or device and its user, using the defined 
interfaces and operations.  In this example, the Vocoder 
Service provides encoded data to the Service User (i.e. 
waveform).  The Service User selects CVSD as the 
transmit algorithm by calling the setTxAlgorithm 
operation defined in the Ctrl interface.  When data is 
available (from the data source), the Vocoder Service 
will encode that data using the CVSD algorithm and 
pass it to the Service User by calling the pushPacket 
method defined in the VocoderPacketConsumer 
interface. 

Data 
Source

Vocoder 
Service

Service User 
(i.e. waveform)

1: Ctrl::setTxAlgorithm(ALG_CVSD);

2: Recieve data

3: Encode data

4: VocoderPacketConsumer::pushPacket( );  
Figure 19  Vocoder Service Collaboration Diagram 

 

SUMMARY 
The development of JTRS APIs was a collaborative 
effort based on design methodologies to allow the 
portability of application software and interchangeability 
of platform services.  The current release consists of 5 
component APIs and a number of primitive APIs.  This 
paper provided a summary of each API included in this 
release, reviewed their origins, and discussed their 
importance to JTRS.  It is expected that additional APIs 
will be released in the future to promote portability and 
reuse.   
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