The first joint TMS forms within the NAE

By Lt. Col. Michael Legens, MAG-41 F-5 TMS Representative, and Tactical Support Wing

This past year has been an exciting time within the Department of the Navy (DoN) Adversary Program as United States Navy and United States Marine Corps F-5 teams consolidated efforts and service issues under a single joint type/model/series (TMS) architecture. A true joint briefing cycle has been successfully implemented and executed. After an in-depth examination of the Naval Aviation Enterprise (NAE) process, this innovative approach has streamlined briefing requirements, resulted in creative solutions and facilitated a refined methodology within the TMS without sacrificing service-specific concerns. The results-to-date are astonishing and have undoubtedly led to significant improvements within the F-5 TMS and the DoN Adversary Program.

Previously, the 44 aircraft and (F-5 continued on Page 6)

In this issue:

1. The first joint TMS within the NAE
 The consolidation contributed to achievement of program goals. Page 1
2. Reserve reporting within the NAE unlike active component
 Increasing visibility on reserve-specific concerns. Page 2
3. Bringing Enterprise culture to big deck aviation ships
 NAE and SWE work together on aviation readiness. Page 3
4. E2E: Refining a process to meet the V-22’s future demand
 VMMT-204 uses CPI to increase throughput. Page 3
5. NAE leadership first hears, then sees COMACCLW challenges
 Wing spotlights issues at BoG raised during NAE Air Board. Page 4
6. A third class petty officer contributes to command readiness
 Improvements nets yellow belt excellence award. Page 5
7. NAE Master Schedule (CAC-enabled link)
8. Links of interest Page 14

Call for submissions

Do you have a good news story about Naval Aviation readiness that you just can’t keep to yourself? Want to share your lessons learned with your fellow Sailors, Marines, civilians and contractors? Have you realized any improvements that can be replicated in other commands?

If so... Get it published in the Current Readiness/Enterprise AIRSpeed Newsletter.

For more information, go to: http://www.public.navy.mil/airfor/nae/Pages/Callforsubmissions.aspx.
Reserve reporting to better reflect its characteristics

By the KC-130T TMS Team

The past two years within the KC-130T type/model/series (TMS) has been an interesting and enlightening time. Since, across all other TMS teams, the Reserve unit data is intertwined within the active duty TMS charts, there is little opportunity to identify Reserve specific barriers and thus affect change within those teams. The KC-130T is the sole Marine Corps “Reserve-only” TMS under the Naval Aviation Enterprise (NAE) construct which reports all of the top five readiness metrics. The TMS provides a unique prospective into what it takes to keep Marine Reserve aviation at the ready.

Initial TMS analysis indicated that certain aspects of Reserve manning combined with our legacy platforms made for a different squadron model from our active duty counterparts; i.e., reduced time available to train/maintain, as well as reducing the above average aggregate experience of aircrew and maintainers. Originally dubbed the “Reserve Dynamic,” the TMS attempted to quantify and define those unique issues specific to operating within 4th Marine Aircraft Wing and Marine Forces Reserve. While only focusing on a single TMS, the issues defined were actually found to be a reflection of those experienced by other Reserve units spanning all TMS platforms.

Aircrew manning shortfalls, which were recognized and highlighted as the limiting factors for Aircrew Core Competency (ACC) readiness, are quite common at most reserve squadrons. The Reserve specific accession programs for aircrew combined with the struggles associated with being a legacy platform wedded to dissimilar active KC-130J squadrons, creates an intricate and, at times, unpredictable recruiting program. Maintainer manning and training have similar complex issues associated with compliance with Reserve Affairs policy, and the multifaceted nature of the maintenance workforce, comprised of roughly 60 percent active and 40 percent reserve Marines. It was noted that the reserves were expected to produce the same dual shift readiness metric as an active duty unit with, at best, two-thirds the everyday maintainer workforce.

Time to train and maintain became a primary focus of interest, as the TMS team investigated causal factors for ready for tasking (RFT) gaps and developed mitigation strategies. During a thorough examination into gap analysis, the team discovered it would take a newly accessed reservist’s entire first enlistment to attain initial qualifications for some maintenance occupational specialties, based solely on availability during scheduled drills and annual training.

As a result of the in-depth examination, spurred by the NAE process, the KC-130T TMS developed a new Maintenance Core

(Reserves continued on Page 12)
Bringing Enterprise culture to big deck aviation ships

By Jacquelyn Millham, NAE Current Readiness CFT/Enterprise AIRSpeed Public Affairs

The “Boots-on-Deck” (BoD) site visit aboard USS Bataan (LHD 5) in 2008 proved to be a seminal event in Naval Aviation Enterprise (NAE) history. Up until that point, much of the work on increasing readiness afloat had been conducted in aircraft intermediate maintenance and a few other departments on aircraft carriers.

After that site visit, the NAE engaged the Surface Warfare Enterprise (SWE) to partner with it in its readiness efforts. That momentum recently culminated in the development of a memorandum of agreement to formalize and expand that partnership to eventually include big deck aviation platforms in aviation readiness activities.

BoD at work

True to its purpose, the Bataan BoD brought to the surface the seams issues Naval Aviation encountered aboard aviation-capable ships. Not only did attendees hear about the efforts of maintainers preparing for the first ever deployment of the V-22 aboard a ship, but they also heard first-hand seams issues that stemmed from L-class ships being Naval Sea System Command (NAVSEA) assets.

While NAVSEA is a member of the Naval Aviation Enterprise (NAE) Extended Air Board, at that time NAE leadership recognized addressing barriers to readiness aboard amphibious ships required a higher level of coordination.

Less than a month later, NAE and SWE leadership held an initial meeting in mid-December to research and explore solutions to improve readiness aboard L-class ships. A barrier removal team (BRT), led by Commander Naval Surface Forces Pacific (CNSP) N42, was created to identify and mitigate Bataan’s readiness barriers.

The site visit was a catalyst to action. As a result of senior leadership hearing and seeing first-hand the challenges deckplate Sailors and boots-on-the-ground Marines face when deployed on amphibious ships, the NAE acceler-

E2E: Refining a process to meet the V-22’s future demand

By Jacquelyn Millham, NAE Current Readiness CFT/Enterprise AIRSpeed Public Affairs

A third type/model/series entered onto the stage this summer to play its role in the most comprehensive transformation of Marine Corps aviation logistics in a quarter century.

Marine Medium Tiltrotor Training Squadron (VMMT) 204 is prototyping Current Readiness/End-to-End Design (E2E) in the Osprey community.

“Applying continuous process improvement (CPI) methodologies and principles to indentify inputs that enable a squadron to achieve its qualifications for a training or tactical requirement is the first step toward aligning Marine aviation logistics and enabling [Marine Aviation Logistics Program II],” said Capt. Angel Toledo, VMMT-204 E2E Team lead.

“The VMM community presents a unique opportunity to implement an E2E design on a transitioning platform,” said Chief Warrant Officer Rob Willis, Supply Chain Team lead for MALSP II. “As lessons are learned at full operating capacity squadrons,
NAE leadership first hears, then sees COMACCLW challenges

By Jacquelyn Millham, NAE Current Readiness CFT/Enterprise AIRSpeed Public Affairs

Sustaining aging aircraft, repair capabilities, support equipment, and increasing the involvement of other resource providers in the Naval Aviation Enterprise (NAE) were among the main topics of discussion at the “Boots-on-the-Ground” (BoG) hosted by Commander Airborne Command Control and Logistics Wing (COMACCLW) at Naval Base Ventura County Point Mugu Aug. 18.

“The issues you will see on the site visit are the same issues we raised at the Air Board,” said Navy Capt. Matthew Danehy COMACCLW commodore, referring to his type/model/series (TMS) brief via video teleconference to the NAE on Aug. 2. “I believe they are not unique to the wing, but also common to the broader NAE.”

Danehy said that anticipating problems will improve readiness but current processes do not lend themselves to this need. “How can we make our analysis more predictive? How can I get ahead of what will cause RFT gaps in the future? What are its triggers?”

As one example, he said, COMACCLW, successfully identified the shortage of engine mounts as a readiness degrader and addressed it before it became a problem. “The shortage had little or no impact to the fleet because we mitigated its impact. Had it not been resolved early on, [the wing] would have been ground to a stop,” he said.

Scheduling and course length of maintenance training is another issue that affects readiness in the squadrons, said Danehy. Squadron maintainers receive their training on the job and from the Naval Air Technical Data and Engineering Services Command (NATEC). “We are training on the weekends and taking NATEC on cruise as well,” said Danehy.

But E5s must attend their career training for three months on the East Coast at the Center for Naval Aviation Technical Training (CNATTU) Norfolk. Scheduling the course depends on demand from the fleet.

Aviation Program Related Logistics, which provides funding for mitigating aging aircraft repair and increasing Aviation Depot Level Repairable costs, is a concern, not only in his command, he said, but the fleet as well. “1961 was the E-2’s first flight. We are living with design decisions made 50 years ago. This platform has several more years in service,” he said.

Availability and positioning of support equipment, such as huffers (auxiliary power units), power carts and NC-10 also were discussed. “These are issues that have growth across other TMSs and that you will see during your visit,” said Danehy.

One of successes highlighted by Danehy was the Navy’s ability to mitigate the shortage of engine mounts, which allowed the fleet to continue operating as planned. Danehy said he was pleased with the response from NATEC and the Navy’s ability to adapt to the shortage.

Aviation Machinist’s Mate Chief Petty Officer Kok Hooi, Fleet Readiness Center Southwest (FRCSW) Site Point Mugu Production Control chief (far right), explains the difficulties maintainers face when fixing an aft intake to Naval Aviation Enterprise leadership. (From left to right) Navy Capt. John Smajdek, FRCSW commanding officer; Cmdr. Keith Nixon, Naval Air Systems Command, E-2/C-2 Program Office, assistant program manager for logistics; Rear Adm. (sel.) C.J. Jaynes, Naval Air Systems Command assistant commander for logistics; Cmdr. Roger Brouillet, Center for Naval Aviation Technical Training (CNATT) Unit Norfolk commanding officer; and Navy Capt. Terry Burt, CNATT commanding officer.)
A third class petty officer contributes to command readiness

By Jacquelyn Millham, NAE Current Readiness CFT/Enterprise AIRSpeed Public Affairs
Photo compliments of COMACCLW

One of the principles of continuous process improvement (CPI) is that all stakeholders’ voices, regardless of rank, must be heard when analyzing processes and planning changes within an organization. Junior personnel, according to its reasoning, bring valuable input that comes from executing the process at the deckplate level. Aviation Support Equipment Third Class and Yellow Belt Christopher Sevilla’s work speaks to the power of this approach.

Sevilla, who has only been in the Navy for two years, is credited with leading a team that reduced waste and improved Fleet Readiness Center (FRC) Site Point Mugu’s hazardous materials (HAZMAT) process time by almost 40 percent. He was recognized with the Naval Aviation Enterprise Site Visit Excellence Award presented during “Boots-on-the-Ground” at Naval Base Ventura County Point Mugu in August.

“We only had one key for all of 900 Division (Support Equipment Division) that only one person could check out at a time. A lot of times, one person had the key and wouldn’t turn it in requiring us to look for the person. That was time we could have spent doing maintenance,” he said.

Another problem that reduced the time spent on maintenance was how materials were stored in (HAZMAT). Grease carts and other gear were returned and placed in the room haphazardly, making it difficult to move in the area, he said.

The solution, developed by Sevilla and five other senior petty officers, was to make duplicate copies of the key for every work center in the FRC. Log books in the work centers are now used to track who uses the key. In addition, they measured the floor in HAZMAT and used AutoCAD to design the layout of the room. “We randomly cut pieces to scale and moved them around like a puzzle to determine which floor layout would be best,” he said.

“We taped out locations and labeled them. Everything was measured so that the room wasn’t congested. When we were finished, each item had its designated spot and the walkways were easily passable,” said Sevilla. Not only did maintainers spend less time in HAZMAT, but the distance they had to travel was reduced by 70 percent.

The two-week rapid improvement event had another benefit: spills were easier to see, identify and clean up.

Sevilla said he was convinced of the value of CPI after witnessing an event in the Support Equipment / Hydraulic Branch. “The first project I saw completed was in Work Center 920. Before the event, equipment would be put back haphazardly which made it difficult to bring equipment in and lay it out. They came in and moved tool boxes, lockers and established designated working lanes. It was faster to get maintenance actions completed,” he said.

“AS1 Scott Hatzung, who was the work center supervisor at the time, asked me my opinion. I told him that it was nice to see how something so easy with time put into it, can help the junior Sailors,” said Sevilla.

He is also working toward earning his green belt and is currently looking at setting up a buffer for the parts locker in the Support Equipment Division. He also would like to establish a “pull” system, so that the demand for a part is triggered when it is consumed, not when it is ordered.

“When we are performing preventative and unscheduled maintenance, the same part is ordered repeatedly and takes long time to come in,” he said. “With the pull system we won’t have excessive wait times.”
three DoN F-5 squadrons were broken into two teams, one Navy and one Marine, each working separate briefing chains and service-centric issues. The F-5 is an Adversary Program cornerstone and the true operational support work horse for USN Fleet Replacement Squadrons (FRS) and Marine Corps aviation combat training and readiness.

Given the changing fiscal environment with many external pressures and time constraints, it became obvious that for longevity, the relatively obscure F-5 TMS required evolution. The two F-5 TMS leads, Tactical Support Wing (TSW) and Marine Aircraft Group 41 (MAG-41), tabled previous TMS differences and aligned efforts in the hopes of securing program synergy and a joint concept for the way ahead. Although fiscal constraints contributed to the reorganization, the requirement to continue effective legacy aviation training support, as well as support future tactical aircraft such as the F-35 Lightning II, drove the realignment.

In addition to improvements to the TMS’s internal communication and alignment of mutual goals, the new structure has seen a few other transformations. First, the consolidation of the two services operational concerns directly contributed to achievement of program goals and more efficient and effective results from supporting agencies, such as Naval Air Systems Command.

Secondly, the alignment of efforts enabled ground breaking improvements in F-5 flight line availability through depot schedule revisions and the introduction of a DoN F-5 loaner program between the three F-5 squadrons.

Finally, the joint approach has significantly enhanced the F-5 TMS position within the Naval Aviation Requirements Group (NARG) forum through the two service’s cooperation and consensus. The Joint TMS’s understanding and respect for each other’s community/service perspectives and operational needs has facilitated a single voice during program briefings and other venues, from requirements generation to the conveyance of TMS issues throughout the Enterprise. The potential for enduring positive impact is significant for both services. The F-5 adversary TMS supports force aviation training for the entire DoN and in several diverse capacities. Ranging from FRS and unit level training, to pre-deployment evolutions and Weapons School support, the impact of F-5 adversary support is undoubtedly, one of the most important contributors to a Naval Aviation squadron’s readiness for current and future conflict.

Recent initiatives to sustain DoN adversary assets have also contributed, in part, to the F-5 TMS’s cooperation and common voice addressing service impacts and needs across the multiple adversary TMSs. It has been universally recognized within the F-5 TMS and the Adversary community even more so that ongoing operational training requirements necessitate the full complement of current DoN adversary platforms. Any uncoordinated changes to allocations and capability would ripple through aviation training during a time when transition to the F-35 is becoming a priority and funding for follow-on adversary aircraft is uncertain.

Despite major fiscal challenges across all DoN programs, the F-5 TMS was able to secure much needed sustainment support, as well as initiate cost effective safety upgrades to ensure the platform remains a safe and highly-reliable adversary platform. Additionally, recent efforts to explore emergent operational-tactical upgrades have made notable headway and, if funded, show promise to expand operational support capability and significantly improve future fleet training as the F-5 will be better suited to replicate current threat aircraft and employ threat representative electronic signatures for enhanced training of fleet squadrons.

The F-5 TMS has been and continues to be the beta test bed for a joint approach within the NAE. The TSW and MAG-41 will continue to answer the call, leading the way towards a new and exciting time within the Navy, the Marine Corps and the Enterprise as a whole. ■
Aviation Ordnanceman 3rd Class Larry Ildefonso, right, and Aviation Ordnanceman 2nd Class Peter Phipps move a pallet of ordnance in the hangar bay of the forward-deployed amphibious assault ship USS Essex (LHD 2). Essex is part of the Essex Amphibious Ready Group and is conducting operations in the western Pacific Ocean. (Photo by Mass Communication Specialist 2nd Class Eva-Marie Ramsaran/Navy.mil)

Naval Aviation’s touch points
Up until now, there were two components of aviation readiness that the NAE did not engage; cruiser-destroyers and littoral combat ships. Recognizing a need to affect aviation readiness aboard big deck aviation ships, Naval Aviation and the Surface Warfare enterprises signed a memo-

A working partnership
AART membership now includes O-6s from Commander, Naval Surface Forces, U.S. Pacific Fleet (CNSP); Commander, Naval Surface Force Atlantic (CNSL); Commander, Naval Air Forces (CNAF); Commander, Naval Air Forces Atlantic; Naval Air Systems Command (NAVAIR); NAE’s Integrated Resource Management Team (IRMT); U.S. Marine Forces Command Aviation Logistics Department (MARFORCOM ALD); U.S. Marine Corps (USMC) Forces Pacific Aviation Logistics Department; Headquarters, Marine Corps Aviation, Aviation Logistics Support Branch (HQMC ASL); Mine, Amphibious, Auxiliary and Command Ships Program Office; Commander, Fleet Air Forward; Littoral Combat Ship Class Squadron (LCSRON); and 1st, 2nd, and 3rd Marine Aircraft wings. Its charter was signed by all parties in early July.
random of agreement in early August standing up the Integrated Surface Warfare & Aviation Readiness Team (ISWART).

ISWART will identify aviation readiness issues on surface ships not already being addressed by other entities. Currently, the NAE and SWE are in the process of developing people, equipment, supply, training and ordnance readiness briefs for the platforms. The team will be co-led by IRMT and CNSP N40. Membership includes CNSP/CNSL N42; CNAF N42; CNSL N01R; and MARFORCOM. Representatives from NAVSEA 21 (the dedicated life cycle management organization for the Navy's in-service surface ships); USMC Deputy Commandant for Combat Development and Integration; HQMC ASL and Aviation Plans, Programs, Doctrine, Joint Matters and Budget Branch; CNAF Force Supply Officer; Naval Supply Systems Command Weapons System Support; LCSRON ONE; CNSP/L N46; CNSP/CNSL N47; and NAE Current Readiness Cross-functional Team will attend as necessary.

This alignment with the SWE is one of many steps toward Naval Aviation, and even the entire Navy, achieving its readiness requirements in a cost-wise manner, said Navy

Capt. Pete Hunt, IRMT’s Director, “The work of ISWART and other initiatives will provide the cornerstone for collaboration and joint action not just in naval aviation,” he said, “but Big Navy as well.”
Fleet Readiness Center Site Point Mugu during the BoG was its cost avoidance savings realized by onsite contractors in the Avionics Division. From 1994, the Forward Site Depot repairs communication/navigation radars, indicators, actuators and micro miniature components. From Fiscal Year 2008 to 2011, its $1.24 million investment realized a $4.9 million cost avoidance in beyond capability of maintenance interventions. In one notable example, more than $300,000 was cost avoided because contractors were able to reach back to their companies to repair a weapon repairable assembly coax, eliminating the need to send it back to its original equipment manufacturer.

FRCSW Site Point Mugu also used continuous process improvement (CPI) to find out why pulse generators had excessive times to reliably replenish (TRR). Consolidated automatic support system (CASS) benches were determined to be a major constraint to throughput. The site has requested that a third bench or of one of its hybrid CASS benches be converted to a Radio Frequency bench. Once it is in place and additional E-2 mission systems shop replaceable assemblies (SRA) have been procured, the FRC expects the pulse generator’s TRR to be reduced from 88 days to seven days, and its expeditious repair (EXREP) rate to drop from 20 to zero.

Another success was in FRCSW Detachment Point Mugu’s T-56 Engine Shop. Its workforce had been reduced, resulting in a decrease in the component’s ready for issue (RFI) buffer and an increase in its TRR in fiscal year 2010. By implementing the first-in, first-out principle for engines; establishing a parts kit in the work center; designating an engine staging area and a standard work chart; using 5S to organize Individual Material Readiness List components; removing supply cage and excessive materials; and reducing the number of maintainers on temporary additional duty when the engine buffer is low, the T-56’s TRR was reduced by 50 percent and its buffers have increased from zero to seven.

FRCSW Detachment Point Mugu also used CPI to tackle the number one degrader in Structures Shop – the side beam assembly. An analysis showed that it had a high EXREP rate of 75 percent and high TRR of 31 days due to the priority of other components for maintenance. With a new process flow to work all Structure Shop components, the total touch time for the side beam assembly is expected to be reduced by 48 percent, total back-log and off-shift time by 50 percent and TRR by 50 percent.

The Structures Shop also benefited from the relocation of a depot level artisan into its work center. To date, the artisan has repaired more than 45 engine components and cowlings and has trained 38 technicians in the last year.

Other successes included:

- Reducing the distance maintainers traveled to and time spent in Hazardous Materials (See accompanying article on Page 5: A third class petty officer contributes to command readiness);
- Increasing visibility into Support Equipment’s flight line readiness through the creation of the Support Equipment Readiness Report. The report, which generates data based on the “pull” from the flight line, also enables maintainers in Support Equipment to better prioritize work.
- Reducing the non-RFI gear rate through the use of the Ground

AFWC Ricardo Juarez, flight engineer for VX-30 (left), discusses the capabilities of the Scan Eagle (foreground) with Mike Warriner, deputy director for the Naval Aviation Enterprise. The Scan Eagle is an unmanned aircraft system that provides real-time direct situational awareness and force protection information for expeditionary teams.
those lessons can then be carried into transition and initial operational capacity squadrons across the community. In doing so, the learning curve is significantly flattened.”

While the first two communities to formally undergo E2E were the KC-130 and AV-8B, VMMT-204 had a head start on its CPI efforts. It was the initial prototype for a Marine Corps organizational-level (O-level) design in 2007. At that time, however, there was not a specific link to the E2E construct. But many of the fundamental enablers discovered during that initial prototype were used in the development of the current E2E construct.

In addition, the VMM community was the first type/model/series (TMS) to undergo a formal leadership alignment process (referred to as a Leadership Strategy Process). “The process involved high-level leadership from not only the MV-22 community, but supporting agencies such as the Defense Logistics Agency, Navy Supply Systems Command Weapons Systems Support and the Training and Education Command,” said Willis. “This alignment of all ‘system’ stakeholders ensured that each agency understood the key deliverables that must be implemented in order to reach the community’s desired end state.”

In 2010, Lt. Gen. George Trautman (then Deputy Commandant for Marine Aviation) indicated that he wanted to implement an E2E Design in the MV-22 community. “Marine Air Group 26 Commanding Officer Col.
Christopher Seymour was very supportive and offered VMMT-204 due to the recent change of command and changes in key leadership positions,” he said.

Not just aircraft
Many of the issues VMMT-204 faces are common to all TMS. Aircraft availability is a constraint on all squadrons and is the focal point around which all other decisions are subordinated.

The qualifications of its workforce is another constraint. VMMT-204 Commanding Officer Lt. Col. Stephen Augustin said he wants to reduce VMMT-204’s flight operation schedule from three 10- to 12-hour shifts, to two eight- to nine-hour shifts. The squadron has a limited number of qualified supervisors, collateral duty quality assurance representatives, collateral duty inspectors and other specialized personnel. “I have qualified people working all shifts, but they have varying levels of qualifications,” he said.

But VMMT-204 is also different than fleet squadrons. “The [Fleet Replacement Squadron] is more like a factory than a squadron in the fleet,” said VMMT-204 Aircraft Maintenance Officer Maj. Christopher Browning. “We push them out to the fleet. We constantly operate at [maximum] capacity. No matter what, in the end, we still have to produce a specified number of students. In maintenance, it is constantly flying, fixing and flying aircraft.”

Added to that is the requirement that squadron leadership attend alignment conferences with other Navy training commands, agencies, and the Air Force to conduct long-term planning.

Increased demand
VMMT-204 is planning for the future as the number of qualified aircrew and pilots it must produce will increase. “We are on track to fly more flight hours than we ever have before,” said VMMT-204 Operations Officer Maj. Lawrence Nichols. “Last year we flew 3,200 flight hours; this year we are on track to fly 3,700. In the future, we need to produce 4,400 hours.”

For more than a year, the squadron has been looking at how to meet the demand for the increase in hours with current assets. “My predecessors started to improve the process and they did the hard work. We’ve taken a look at how many aircraft we are getting and how many flight hours we are able to produce each day. We are asking ourselves what should be the appropriate number of personnel in the squadron. We are in the process of understanding what the right size for the unit should be to produce a specified number of flight hours and manning for the right number of flight,” he said.

With this in mind, Augustin, who assumed command in July, tasked the VMMT-204 representatives and the E2E Team with validating a change in the sortie schedule and reduce the number of flight operations hours from three 10- to 12-hour shifts, to two eight- to nine-hour shifts.

“What E2E is doing for us is validating our process and refining it so that it is razor sharp,” said Nichols. “We have a two-three-three (a daily sortie schedule comprised of three shifts of launch and recovery of V-22s)
In February, Sevilla plans to re-classify as a hospital corpsman. While the field is more in line with his college courses in biology he took before he joined the Navy, he said he would take his CPI skills with him wherever he goes. “CPI not only showed me that it is a tool that can be used to eliminate what is slowing you down, but it also opened my mind up to how to approach different situations and how to come to a solution to a problem,” he said. (Note: CPI initiatives are currently underway within the Bureau of Medicine and Surgery.)

“Because of the skills I learned at the FRC,” said Sevilla, “I spend more time thinking of solutions and looking at them from different aspects instead of just one way.”

Support Equipment Troubleshooter – a cart equipped with gear that enables maintainers to bring FRC maintenance capability out to the flight line, reducing the need for organizational-level maintainers to induct components into the FRC.

- Applying CPI in the Avionics, Support Equipment and through-out the Airframes divisions.
- Achieving a 33 percent advancement rate, (which is seven per-cent higher than the Navy-wide average) and a 62 percent retention rate in the command.

Vice Adm. Al Myers, Commander, Naval Air Forces, and Vice Adm. David Architzel, Commander Naval Air Systems Command (NAVAIR), led the site visit. Rear Adm. Bill Sizemore, Chief of Naval Air Training; Brig. Gen. Gregg Sturdevant, Assistant Wing Commander for Third Marine Aircraft Wing; Rear Adm. Mat Winter, Commander, Naval Air Warfare Center, Weapons Division NAVAIR Assistant Commander for Test and Evaluation; Rear Adm. (select) C.J. Jaynes, Assistant Commander for Logistics, Naval Air Systems Command; Rear Adm. (select) John King, Commander, Naval Supply Systems Command Weapon Systems Support; representatives from CNATT; Defense Logistics Agency; Headquarters Marine Corps, Aviation Logistics Support Branch; Commander, Naval Air Force Reserve; Office of the Deputy Under Secretary of the Navy/Deputy Chief Management Office; and contractor support also were in attendance.

Naval Aviation Enterprise, CONMACCLW and FRCSW Site Point Mugu leadership also discussed parts availability, relocating the T-56 engine test cell, procuring a third CASS communications/navigation/identification friend or foe systems bench, continued funding for contractors, replication opportunities, expanding the use of CPI aboard amphibious ships, reverse engineering of obsolete components, the integration of unmanned aerial systems into Navy squadrons, how phase maintenance intervals affects the workforce, Flight Line Electric Distribution System power disruptions, troubleshooting and testing weapon repairable assemblies and their SRAs, and challenges associated with the Joint Tactical Information Distribution System. BoG attendees took these and other issues back to their commands for further review and possible resolution.
Enterprise AIR
Speed
Email: NAE@navy.mil

End-to-End Lead Capt. Angel Toledo (right) reviews some of the variations that may occur in VMMT-204 when implementing its new flight schedule with the squadron’s aircraft maintenance officer, Maj. Christopher Browning.

The two-shift model also has its benefits, said Toledo. “Marines would no longer be driven by the clock, but by goals. They know that once the work is completed, they are done. With this model, leadership now has the incentive of time.

“Marines with much needed levels of certifications and qualifications will also be more readily available,” he added.

Both Browning and Nichols credit E2E with helping them understand the squadron’s throughput. “We all have certain obstacles,” said Nichols. “I was aware of mine. And maintenance was aware of theirs. The E2E team helped us improve our visualization and awareness of our obstacles in terms of the system. E2E put all of them on one sheet of paper for the entire squadron. The synchronization of the two brought us together and identify them together so that we can find more efficiencies and how to overcome them.”

“E2E opened my mind a little bit more,” said Browning. “We got around the table and came up with ideas. When I didn’t think something was that big of a problem, we’d ‘peel back the onion’ and then I’d realize that it may really be a choke point.

“We’d also talk about how a maintenance process affects operations. We now are more aware of how what we do affects processes down the chain and makes us think in terms of effects,” he said.

“What I like about E2E is that it allows me to create and pass on a codified process. It doesn’t let personalities decide whether or not to do this or require the next Marine in my position to rely on intuitive management,” said Nichols. “I can teach the next Marine who takes my place with the materials that come out of this initiative. Codifying the process makes it repeatable, executable and effective.”

VMMT-204 is scheduled to complete E2E in early 2012.
Links of interest

1. **NAE Air Plan – Leadership Strategy Process Initiative***
 This issue discusses Marine Corps Aviation’s use of enterprise principles to establish a Leadership Strategy Plan (LSP) that created a strategic mapping process to increase the readiness of the MV-22 force while simultaneously reducing flying hour costs.

2. **2005 BRAC implementation completed**
 The Navy completed another milestone to better posture itself for the future.

3. **Marines prepare for F-35B operational testing**
 The platform’s low-observable characteristics will require different maintenance practices, which are currently under development.

4. **FRCSW Almanac - Volume 5, Issue 3***
 Fleet Readiness Center Southwest’s joint effort with NAVSEA to increase the efficiency of the LM2500 gas turbine are featured in this issue.

5. **EMALS successfully launches E-2D Advanced Hawkeye**
 The new launch system takes another step toward introduction to the fleet.
 Watch the video on All Hands Update
 http://www.navy.mil/swf/mmu/mmplyr.asp?id=16279

6. **UH-1Y pilots fire first APKWS shots**
 A total of six shots were fired part of the program’s low-rate initial production phase.

7. **NAVAIR Airwaves**
 This week’s video brings you the latest platforms to successfully fly on a 50/50 biofuel blend and how the NAVAIR Cargo & Special Operations supports the Fleet.
 http://youtu.be/CGKih4e9w6M

(Links continued on Page 15)

An F-35B Lightning II makes the first vertical landing on a flight deck at sea aboard the amphibious assault ship USS Wasp (LHD 1) Oct. 3. The F-35B is the Marine Corps Joint Strike Force variant of the Joint Strike Fighter and is designed for short takeoff and vertical landing on Navy amphibious ships. (Photo by Mass Communication Seaman Natasha R. Chalk/Navy.mil)
8. **Lakehurst engineers design Litening Pod Loader to support Marine Harriers**
 Mounted in the center-line station of the aircraft fuselage, the complex electronic precision targeting system significantly increases the combat effectiveness of the aircraft during day, night and adverse weather conditions.

9. **Software change gives V-22 pilots more lift options**
 Read how a four-degree tilt of the V-22 rotors allows the aircraft to carry more weight and achieve greater overall performance in hover mode.

10. **Initial Marine Corps virtual aviation training network tests successful**
 ADVTE -- the Marine Corps’ Aviation Distributed Virtual Training Environment -- is a system of local and wide area networks that will allow aviators operating simulators of many Marine Corps platforms to “fly” together regardless of geographical location.

11. **New MH-53E desktop trainer developed for Sea Dragon aviators**
 The trainer simulates some of the components of a glass cockpit.

12. **NAVSEA’s Who’s On Watch**
 Find out how Port Hueneme Division, Naval Surface Warfare Center realized almost $20 million in cost avoidance by streamlining its depot-level repairable carcass turn-in process and read about improvements being made to the Super Saw – a specialized tool that cuts through a submarine hull.

(Links continued from Page 14)

(Links continued on Page 16)
13. **Lean Stuff**
The following PDF documents are a list of links from commercial resources which are compiled by NAVSEA and disseminated to CPI practitioners and organizations throughout the Navy.

September links
https://www.portal.navy.mil/comnavairfor/Naval_Aviation_Enterprise/AirSpeed Newsletters/Newsletter repository/Lean_Stuff/September_2011

October links
https://www.portal.navy.mil/comnavairfor/Naval_Aviation_Enterprise/AirSpeed Newsletters/Newsletter repository/Lean_Stuff/October_2011

14. **AIM-9X Block II completes back-to-back live fires**
The tests were conducted to evaluate the weapon's ability to deliver expanded air-to-air warfare capabilities.

15. **VX-31 flies Harrier on biofuel blend for the first time**
Another platform conducts preliminary ground tests on the fuel.

16. **EA-6B Prowler flies on biofuel blend**
All Hands Update takes a look at the Navy's most recent step toward energy independence.
http://www.navy.mil/swf/mmu/mmplyr.asp?id=16234

17. **Unmanned aircraft closes biofuel chapter**
Using a combination of JP-5 aviation fuel and plant-based camellia brings unmanned aerial vehicles one step closer to achieving the Navy's energy goals.

Watch the video on All Hands Update

18. **F-35B completes initial shipboard vertical landing aboard USS Wasp**
The first at-sea vertical landing for the Marine Corps' F-35 JSF version collected data on the aircraft's ability to perform short take-offs and vertical landings on a ship at sea, as well as determine how the aircraft integrates with the ship's landing systems, and deck and hangar operations.

19. **Cargo UAS to deploy, keeping trucks off the road**
Lockheed Martin/Kaman's K-MAX unmanned helicopter will augment Marine Corps ground and air logistics operations during a six-month deployment in November.

* Site is CAC-enabled. Some readers may not be able to access the link.*