Commander,
Operational Test and Evaluation Force

OTD Checklist

POCs for OTD Checklist
COTF 01B—Test Development & Design
Contact 757-457-6029 or 757-457-6173

Program: ______________________

Date: _________________________
OTD IEF Checklist

Purpose: This is a step by step checklist leading an OTD through the entire mission based test design (MBTD) process. It relates the MBTD steps to development of sections in the Integrated Framework.

The checklist is broken up into smaller checklists based on significant reviews (Touchpoints, IPR #1, Design of Experiment (DOE) (including E-IPR completion), and IPR #2).

CAUTION: Using this checklist does not absolve the OTD of the responsibility for thought or the requirement to understand why they are performing these steps and how to apply the results. If you don’t understand, ask.

Note: The OTD and the CTF should both sign the “Date Completed” blocks throughout this checklist. Use of the IEF database is required for all IEFs. Most of the tables in the IEF document are produced directly from this database.

OTD IEF Touchpoint 1 Checklist

Purpose: Building the reference library, defining System Under Test/System of Systems, initial mission analysis and COI selection

1. Gather and review the applicable reference documents for the system under test (SUT).
 a. ORD, CDD and/or CPD

 They are the overarching OPNAV and Joint Requirement Oversight Council (JROC) approved requirement document.

 NOTE: OTDs need to be aware of the schedule and plan for updates to the CDD or CPD. The program office or OPNAV resource sponsor can provide this info. All OTDs must ensure COTF is aware of and is included in the review process. OTDs shall review their JCIDS requirement documents and submit recommended changes to OPNAV and the Program Office when they are routed for review.

 b. Test & Evaluation Master Plan (TEMP)

 NOTE: A program office document that requires COMOPTEVFOR concurrence. The program office T&E IPT lead manages all TEMP updates and is the primary source for updates and status of this document.

 c. Concept of Operations (CONOPS)

 NOTE: Usually provided by the user community and/or the resource sponsor (OPNAV). Brand new programs may not have one or may rely on an older one for a legacy system. Also consider any relevant TTPs.
d. Information Support Plan (ISP)

NOTE: A program office document that captures information technology requirements and interfaces in sufficient detail to enable testing and verification of those requirements. Some may contain useful mission task breakdowns for the system under test.

e. Required Operational Capability/Projected Operational Environment (ROC/POE)

NOTE: Defines the primary mission areas and expected environment for the overarching platform. Not all programs will have a platform or system specific ROC/POE. These should align with the overarching USN ROC/POE – OPNAVINST C3501.2K (classified document).

i. Platform specific ROC/POE

ii. USN ROC/POE

NOTE: Unclassified excerpt of the 20 mission areas and first level operational capabilities is available on the Y: drive.

f. Functional Requirement Documents (FRDs)

NOTE: Used to document requirements, typically at the sub-system level. May also be used to capture requirements for upgrades/modifications.

g. DODAF Architectures

i. **OV-1 High Level Operational Concept Graphic,** typically found in TEMPs or the ORD/CDD/CPD

ii. **OV-5 Operational Activity Model,** depicts activities, relationships among activities, inputs and outputs.

iii. **OV-3/SV-6 Information Exchange Requirements (IERs),** identifies the operational IERs between users and the SUT.

iv. **Other DODAF views as applicable (OV/SV/TVs)**

h. Review the CDD References and gather those deemed appropriate. References cited in a CDD/CPD are sources for specified requirements and should not be overlooked. (i.e. STAR, TTPs, SEP, TTVRs, etc).

i. Security Classification Guide

NOTE: The Security Classification Guide is a required reference for every COTF test document.

j. Warfare Capability Baseline (WCB) Weapon/Target Pairs

Date Completed: _________________________________

2. Define the System Under Test (SUT). This should be defined in the CDD/CPD and/or applicable CONOPS.

a. Identify the final configuration of the SUT, to include major hardware & software components. If multiple phases of IOT&E/FOT&E have different configurations, explain that in the SUT definition.
b. Identify the end user (operator, maintainer, etc.)

c. Identify the system’s operational environment

d. Describe the capabilities the SUT will provide, the
capabilities gaps it will address and the desired
effects of the system

3. Define the System of Systems (SOS). (This may be
defined in requirement documents as Family of
Systems).

a. Determine what other systems the SUT will
interface and interact with that are outside the
scope of test

b. Identify how the SUT impacts other systems and
missions

NOTE: The SUT bounds the scope of test, but OTDs must be
aware of the impact SUT deficiencies may have on the SOS.
Understanding the relationship and definition of the SUT
and the SOS will support categorizing deficiencies as Blue
or Gold Sheets in the final report.

4. Draft the SUT and SOS Descriptions for inclusion in
the IEF (Section 1). Use the applicable templates on
the Y: drive.

NOTE: Readers should understand what the SUT is, who uses it,
why they use it, how the SUT operates, and how the SUT
supports the SOS in mission accomplishment.

Date Completed: _________________________________

5. Determine the Effectiveness Critical Operational
Issues (COIs)

a. Review the OTD Manual, Chap 4 (Section 403)

b. Review the Operational Capabilities for each
Mission Area in the ROC/POE that could apply
c. Identify the Mission Areas that capture the
majority of operational capabilities affected by the
SUT

NOTE: If the operational capabilities captured under multiple mis-
sion areas are similar and there is little difference in how
the SUT is used (the tasks that operators perform are the
same, with similar success criteria and conditions), then
select the most stressing mission area as your COI(s).

CAUTION: If review of the operational
capabilities does not result in a mapping to specific
ROC/POE mission areas, and a functional COI is consid-
ered, approval must be received from 00 or 00D before
proceeding. 01B CTFs can assist in this decision.

d. Determine if an Information Assurance (IA) Effec-
tiveness COI is required

NOTE: If the system is net-enabled (has connections and shares
data with other systems over a network), an IA COI is re-
quired. 01C IA analysts can assist in this review.

i. If an IA COI is required, use the standard COI
language and IA references located on the Y:
drive under IA Best Practices

ii. Review Standard Operating Procedure 10-01,
OT of IA, for additional details

e. Consider addition of other effectiveness COIs (i.e.
Survivability)

Date Completed: _________________________________

6. Create the effectiveness COI questions.

a. Mission-based example: Will the (SUT) successfully
accomplish (primary operational capability) in sup-
port of the (COI) mission?
7. Determine Suitability COIs
 a. Reliability, Maintainability, Availability & Logistics Supportability are normally standard COIs
 b. Review optional suitability COIs identified in the OTD Manual
 i. Use of optional suitability COIs requires approval from COTF 00 or 00D
 ii. Items previously captured in optional COIs (i.e. Training, Documentation) should be evaluated under the appropriate effectiveness or suitability COIs.

8. Create Suitability COI questions.

Date Completed: _________________________________

9. Draft the Effectiveness and Suitability COI sections of the IEF (first two sections of Chapter 2).

Date Completed: _________________________________

10. Touchpoint #1
 a. Schedule a review with the 01B CTF, 01B A/B code, & division A/B code to approve COI selection (or 00/00D if a functional COI is proposed).
 b. Be prepared to provide the relevant requirement document (CDD, CPD, etc) at this review for reference
 c. OTD should provide:
 i. Section 1 of the IEF
 ii. Proposed COIs
 iii. COI questions

Date Completed: _________________________________

Attendees:

11. Close Action Items

NOTE: If the approved COIs do not match those documented in an earlier version of the TEMP, a TEMP page change may need to be initiated.
OTD IEF Touchpoint 2 Checklist

Purpose: Developing the subtask hierarchy, defining conditions & beginning to build the IEF MBTD database.

Note: Use of the IEF MBTD database is MANDATORY. All subsequent steps should be captured in a program database.

1. Define 1st level tasks for each COI
 a. Review the OTD manual, section 403, which provides guidance on mission tasks.
 b. Review the default 1st level tasks provided for each COI. Identify the 1st level default tasks that are not affected or relevant to the SUT. These will be retained in your hierarchy, but grayed out.
 c. Identify additional 1st level tasks to consider adding to the COI mission threads as appropriate.
 d. Meet with the 01B CTF to create the initial IEF database for the specific project and review proposed task hierarchy.

2. Decompose 1st level tasks into subtasks
 a. Provide enough detail so that all major components of mission accomplishment are accounted for. The OV-5 may be a useful resource for this step.
 b. Review the draft 2nd/3rd level subtasks commonly used by other programs, and select or modify as appropriate within the IEF dB.

3. Use IA COI Task breakdown, if appropriate
 a. If the SUT has an IA COI, use the default IA task hierarchy provided by 01C (detect, protect, react, restore). IA task guidance is available on the Y: drive.

4. Develop Suitability task hierarchy
 a. Review common task hierarchies used by other programs for suitability COIs, available in the IEF dB.
 b. Reliability and Availability COIs generally do not have a task breakdown associated with them.
 c. Maintainability COIs may have task breakdowns that are unique to the SUT and required maintenance actions.
 d. Expand Suitability task hierarchy as required

Date Completed: ________________________________
5. Review completed task hierarchy
 a. The task decomposition should allow OTDs to logically design a sequence of events (an end to end mission event or a subset of a mission that will be repeated numerous times) in a vignette, that a tester will execute as a test event.
 b. Verify the final task hierarchy logically captures the major tasks the SUT or operators perform as part of the applicable mission area (COI).

Date Completed: _________________________________

6. Establish conditions
 a. Review the requirement documents and the 01B database of conditions used by previous programs as a starting point. The CDD may identify environmental conditions that define the SUT’s operating envelope. The 01B database contains the standard conditions defined in the UJTL & UNTL task lists, and custom conditions created by OTDs for their specific SUT.
 b. Select the conditions that will impact SUT performance or operator actions from each of the four categories.

NOTE: Conditions are things that may affect performance of the SUT or influence operator actions when using the SUT (e.g. sea state, clutter, network load, presence of jamming, target type). They are broken into 4 categories: physical environment, military environment, civil environment (rarely used), & custom-created by the OTD.

Date Completed: _________________________________

7. Complete Conditions Traceability
 a. In the SUT IEF dB and with initial CTF assistance, associate each condition with the appropriate lowest level task in the task hierarchy.
 b. Verify conditions directory produced by IEF dB matches expectations, as conditions only appear in the directory after being traced to a subtask.

NOTE: The resulting linkage should identify what things can influence the operator’s actions and/or performance of the SUT. Having this traceability supports building a vignette, and subsequent planning associated with design of experiments (DOE).

NOTE: Conditions are not required for every subtask.

Date Completed: _________________________________

8. Begin thinking about whether the conditions are controllable or recordable and how the OTD might control them.

CAUTION: Do not attempt to document every conceivable condition that could affect the SUT (e.g. sun spots). Using the OTD’s subject matter expertise, identify those conditions most likely to impact performance or those of most interest to the testers.
7. Establish descriptors (levels) for each condition
 a. Review the 01B database of conditions and their associated descriptors used by other programs.
 b. Verify the default descriptors provided are appropriate for the SUT.
 c. Modify the descriptors as required. Descriptors (levels of the conditions) can be modified by OTDs
 d. Pay particular attention to the definition of each descriptor/level. They should be operationally relevant and clearly bounded for purposes of data collection and post test analysis.

NOTE: The identification of controllable vs. recordable conditions will impact follow-on design of experiments, test resource requirements and data collection requirements. Recordable conditions are items that can’t be specifically controlled (e.g. sea state) but are critical to capture for post-test analysis purposes. Controlled conditions are items that can be controlled/adjusted as desired by the OTD during an operational test event (e.g. presence of jamming). These controllable conditions will be used to identify different conditional variations required to test the SUT in. (e.g. day/high alt/EO mode vs night/low alt/IR, etc)

NOTE: Identification of conditions as controllable or recordable in the IEF does not prevent OTDs from modifying or updating their test design at a later date. For example, data collected and analyzed during IT events may drive OTDs to a different conditions list which will be documented in the appropriate test plan.

9. When conditions have been selected and descriptors defined, generate the conditions directory from the IEF dB. (see IEF template)

10. Touchpoint #2
 a. Schedule a review with the 01B CTF, and A/B codes from 01B and the division to review the complete task breakdown, selected conditions, and their associated descriptors. OTD should provide the following from the IEF dB:
 b. Table B-1 (Conditions directory)
 c. Table B-4, with the conditions linked to tasks (measures will be blank)

11. Close Action Items

NOTE: Descriptors should be identified in quantifiable terms vice simply “easy/medium/hard”. Testers and reviewers need to know how each of those qualitative terms are defined. Also note that breaking conditions up into descriptors/levels (which is done to support subsequent DOE) does not imply analysis across the whole spectrum will not be done, if applicable.
OTD IPR #1 Checklist

Purpose: Building the attribute matrix, linking measures to the task hierarchy, creating data requirements for the measures, and conducting IPR #1.

1. Review the overarching SUT requirement document (CDD/CPD/FRD, etc).

2. Review the attribute matrix in the IEF template.

3. Identify attributes/measures documented in the CDD
 a. Measures are all statements of required capabilities (commonly referred to as the “will/shalls” statements, or KPPs, KSAs, etc.)

 b. Extract all measures from the CDD, with proper references to the source document (paragraph, table, etc), and annotation as a MOE, MOS or System of Systems (SOS) attribute.

 c. KPPs should be noted as such in the IEF dB.

 d. Criteria (i.e. thresholds) used to assess each measure also needs to be captured. Ensure that the question (measure) matches the answer (criterion). Example: A “Probability of Kill” measure has a criterion of “0.XX”.

4. Review the other applicable reference documents. Extract derived measures from those alternate sources, being sure to capture the specific source (doc title, paragraph, etc)

5. Ensure WCB weapon/target pair performance is captured in measures appropriate to the system. The measure type is other.

Date Completed: _________________________________
6. For each measure, define the type of measure it is (only three options exist)
 a. Specified = Clearly documented in the CDD. Either a KPP, MOE, MOS or stated as an important “will” or “shall” statement
 b. Derived = Not explicitly stated in the CDD but come from some other source document and are useful in assessing the SUT capability
 c. Other = measures that will be used to evaluate the effectiveness and/or suitability of the SUT, but do not have a source document or reference

NOTE: Derived measures are documented or derived from other source documents (i.e. CONOPS, TTPs, SUT specifications, military standards, OPNAV instructions).

7. Populate the IEF dB with the SUT/SOS measures
 a. Be sure to include the source, measure, criteria and type of measure for each one
 b. Attributes serve to group common measures together. Attributes are designated MOE/MOS/SOS in the IEF dB. Ensure all measure under a specific attribute are in-fact MOEs, MOSs, or SOSs.

NOTE: Not every single “will” and “shall” statement in the requirement document is worthy of including in the attribute matrix as a measure. OTDs should scrub the resulting matrix for duplicate or unnecessary measures.

8. Identify Information Assurance measures
 a. Specific common IA attributes and measures applicable to all systems are provided in the 01C Best Practices folder
 b. Develop additional IA attributes and measures (with the corresponding source, criteria and type) based on the specifics of the SUT.
 c. Review the IA measures with the 01C IA analysts.

Date Completed: _________________________________

9. Define the data requirements (DR) for each measure. This can be done as measures are entered into the IEF dB. All measures have one or more DRs.
 a. Ensure that the DRs for each measure are comprehensive.
 b. Categorize data requirements based on how they will be collected during test. The IEF dB has standard categories, but others can be added.

Date Completed: _________________________________

NOTE: Data requirements consist of three primary items: (1) Element (i.e. temperature, position), (2) Unit of measure (e.g. °F, lat/long in degrees, min, sec), & (3) Data source (i.e. the specific mission computer data log). A data requirement should be created for each source.

For qualitative data requirements, the same items are required. Examples of standard qualitative data requirements are in the IEF template. The unit of measure may be qualitative comments or a Likert scale. Data source should point to a survey sheet or log.
10. Identify the orphan measures (specified only) and mark accordingly in the IEF dB.

NOTE: Orphan measures are not testable or not relevant to OT. OT will not collect data for or look at as part of our assessment of effectiveness and suitability.

11. Identify DT only measures (DT DRs only) and mark accordingly in the IEF dB.

NOTE: DT only measures are those that remain relevant to OT, but rely on data collected during DT for verification. Our operational assessment of those measures will solely rely on data collected or reported by DT. These measures are maintained in the attribute matrix but denoted with a “(DT Only)” after the measure description.

12. Export the Attribute Matrix from the IEF dB and scrub the measures for clarity
 a. The measures/criteria in the documentation may be ambiguous, contradictory between multiple measures, or simply need clarification
 b. Request clarification from the resource sponsor as necessary on specified measures.
 c. Request written (email) confirmation from the resource sponsor that derived/other measures are acceptable for SUT evaluation. Without this confirmation, problems related to derived/other measures cannot be written up as risks and/or deficiencies (only operational considerations). Sponsor feedback will be briefed at the E-IPR.

13. Complete measures traceability. In the IEF dB, link the measures to the appropriate subtasks in the previously generated task hierarchy
 a. Measures should be linked to the applicable lowest level subtask.

NOTE: OTDs should be approaching this from the question “What measures do I need to evaluate the ability of the SUT to perform this task?” and then select measures that answer that question from the attribute matrix. If the measure does not help answer that question, don’t link them.

 b. Review for measures that are not linked to tasks. Consider orphaning these measures. If they are relevant to OT, go back and link them to the appropriate task. If the appropriate task does not exist, add tasks as needed.

 c. Review subtasks to ensure success is fully defined by the associated measures. If not, add OTA Created measures as to fill the holes.

NOTE: Subtasks can have many associated specified/derived measures, and still need OTA Created measures to cover the full meaning of success for that task.

14. Identify the critical tasks.
 a. Designate them as critical in the IEF database.

NOTE: Critical tasks are essential to mission accomplishment. If the operator or SUT is not able to successfully accomplish the critical task, this could potentially result in finding a COI to be UNSAT; and/or the SUT not effective or suitable.
15. Identify critical measures.

NOTE: Candidates should include KPPs (if the KPPs are operationally relevant), significant MOEs, MOSs, and other measures deemed important to the OT, etc. Critical measures define success of critical tasks (failure of the measure constitutes failure of the task). For FOT&E, critical tasks/measures define success of SUT upgraded capability or regression performance.

- Designate critical measures in the IEF database. Only the measures linked to the critical tasks (including COIs) can be designated as critical.

- Review the “critical tasks to critical measures” report from the IEF dB. This is table 2-1 in IEF template. Compare against the KPPs, MOEs, & MOSs identified in the relevant requirement document, previous TEMP, etc. and verify that all critical measures are accounted for.

NOTE: Requirement documents are not perfect. There may be KPPs, MOEs or MOSs that are not of critical value in determining effectiveness and suitability of the SUT.

16. Review the resulting attribute matrix and traceability matrix from the IEF dB.

- The Traceability Matrix shows the task breakdown for each COI, with measures and conditions mapped to the appropriate subtask. Review for consistency and be prepared to defend the linkages.

- Verify that “grayed out” measures and tasks appear correctly.

NOTE: Measures and subtasks are “grayed out” when they are applicable to OT, but do not apply to the coming test/report that will be supported by this MBTD effort. For example, measures for the next increment can be included in the attribute matrix, then grayed out.

17. Meet with the 01B CTF and review the IEF products

- Run all appropriate checks/reports in the IEF dB and resolve any discrepancies.

- Resolve all warnings and errors in the IEF dB.

Date Completed: _________________________________

18. Share the resulting tables with DOT&E and the program office T&E IPT lead if not done already

- Document their comments via email.

- Discuss unresolved working level comments at IPR #1.

Date Completed: _________________________________

Date Comments Received: __________________________

19. Review IEF products and prepare for IPR #1

- Verify the following products are complete and ready for review:
 - Draft IEF sections 1 and 2 (not section 2.3)
 - Conditions Directory
 - Attribute Matrix
 - Orphaned Measures Matrix
v. Traceability Matrix

vii. Critical tasks to critical measures table (2-1)
Measure-to-data requirement table (available as a custom export from the IEF database)

☐ c. Build the IPR #1 brief using the template available on the Y:\01C\Best Practices\Briefs

d. Schedule IPR # 1 with Division A/B code, 01B A/B code, CTF, OTC, OTD, and contractor support personnel.

i. DOT&E should be invited to participate

☐ 19. Conduct IPR #1

Date Completed: _________________________________

Attendees:

☐ 20. OTD documents action items and shares with attendees

Date Completed: _________________________________

☐ 21. Close Action Items

Date Completed: _________________________________

OTD Design of Experiment (DOE) Checklist

Scope: Step 9 of the MBTD/IEF Process: Statistical Design/DOE

Purpose: Selecting response variables (RV), conditions/factors, developing the statistical design needed to generate a run matrix and determine the appropriate sample size to achieve a satisfactory statistical power associated with the factors.

NOTE: Statistical Design of Experiments varies from one program to the next. One size does not fit all. OTDs need to work closely with their divisional analysts and 01B to arrive at a statistical design that is defendable and useful. The following checklist touches on the basics – each program will be unique. Communication amongst all parties, including with DOT&E and IDA reps is critical.

CAUTION: Using this checklist does not absolve the OTD of the responsibility for thought or the requirement to understand why they are performing these steps and how to apply the results. If you don’t understand, ask.

☐ 1. Identify test objectives for the SUT.

a. The format of testing will hinge on goals set for test. Some can be met at-sea. Others can be met through modeling and simulation. Still others can be fully satisfied with DT data. This process impacts all test design, not just statistics.

b. Test must focus on characterizing performance of critical tasks across the operational environment (main effects and interactions).

c. Ensure that critical measures and their associated data requirements cover these objectives.

d. Begin thinking about the statistical designs that will be needed to meet these objectives.
2. Draft the “Critical Tasks & Measures” paragraph and table for each COI (see IEF template).

NOTE: This paragraph should provide an objective statement (characterize across the operational envelope) and identify the overall approach for evaluating each COI by pointing the reader to the critical tasks and measures used to evaluate that COI. The identification of critical tasks and measures does not imply that other measures mapped to that COI in the traceability matrix won’t be looked at; just that the critical one’s carry more weight in the assessment.

Date Completed: _________________________________

3. Export critical tasks to critical measures tables from IEF dB and insert into section 2.3

4. Identify potential response variables from the list of remaining critical measures. Identify as many as required to cover the mission(s).

NOTE: Response variables are critical measures that must be analyzed with statistical methods to support conclusions in the report and whose result may be influenced by controlled conditions (factors). They are used in planning to ensure a minimum adequate sample size (number of runs and/or data points) and proper design (factor variations).

a. Response variables should be:
 i. Testable (i.e. practical, able to collect data on)
 ii. Reliable (i.e., relatively free of random noise)
 iii. Valid (i.e., represent an essential aspect of SUT performance)
 iv. Meaningful – a direct measure of the mission performance we are interested in; overall mission performance or key elements of a mission task breakdown (one or multiple critical tasks)

b. For each response variable, determine if historical data from previous evaluations exist. This includes both previous OT and DT data. If available, review with divisional and 01B analysts

NOTE: Ideally, response variables are explicitly identified and thresholded in a requirement document. In some cases, OTD’s may create response variables to better capture the SUT performance (criterion is usually “unthresholded”).

v. Quantifiable (i.e. either a numerical performance measure or some qualitative characteristic for which a numerical scale can be directly developed)

vi. Discriminating – should distinguish levels of effectiveness

vii. Preferably continuous vice discrete

CAUTION: Using binomial/discrete response variables should be avoided, in favor of continuous variables if at all possible. While binomial variables can provide just as much info regarding system performance, they require significantly more data.

NOTE: The type of statistical test for an RV is dictated by the distribution of the RV.

Continuous variables can be plotted along a range of values on a numerical scale (e.g. time, range, speed). These are often normally distributed, meaning the frequency of occurrence of values follows the bell-curve, and allow for the use of a variety of statistical analysis techniques. Non-normal distributions may require conversion to normal values prior to analysis, or may rely on different statistical tests.

Binomial variables are discrete yes/no, probabilities, proportions, etc. and do not provide operators with as much insight into the performance of a SUT in the intended environment. There are also other types of discrete variables (e.g. count data such as number of false alarms which usually follows the Poisson distribution), etc.
c. Identify the statistical test objectives for each RV. Common objectives include:
 i. Characterizing performance across the operational envelope through main effects and interactions (developing a design that supports ANOVA or logistic regression, if applicable)
 ii. Verifying performance is above a threshold across all conditions
 iii. Verifying performance is above a threshold in a specific subset of conditions
 iv. Verifying new system is as good as a legacy system

NOTE: The objective statement varies with chosen test objectives. Consult with your CTF to be certain your objective statement is accurate to the statistical test goals. Also ensure the objective for this RV is consistent with the overall objective written for the COI in the critical tasks and measures paragraph.

Date Completed: _________________________________

5. Identify the conditions that are associated with the selected critical tasks and measures and the selected response variables. These should already be linked to the relevant tasks/subtasks and can be found by reviewing the Traceability Matrix.

Date Completed: _________________________________

6. Prioritize the conditions associated with each response variable by the anticipated impact they will have on SUT or operator performance. Determine factors for the test design.

7. Prioritize the levels of each condition (which were previously identified as part of the Touchpoint 2 checklist) as they apply to each critical measure.
 a. Estimate the effect that different levels of conditions have on the performance of the SUT as the condition changes between descriptors/levels (i.e., significant/moderate/low effect).
 b. Estimate the likelihood of encountering the different levels in an operational environment. (i.e., all levels are equally encountered, some are seen more than others, etc).

NOTE: This step focuses the test design on the most operationally relevant environment/scenarios. Include outside organizations in this process. The goal is to ensure that the test design includes and focuses on the conditions that are most operationally relevant. This should be done for both controlled and recorded conditions.

NOTE: Historical data are extremely useful in the subsequent DOE planning steps. They can provide a baseline for performance of a legacy system, validate assumptions in the numerical behavior of the measure (type of distribution, standard deviation, etc.), serve as the basis for screening of factors impacting the RV, or justify an effect size for expected test data.

NOTE: This also serves as a sanity check of the conditions associated with the task. Previously, conditions were linked to tasks, and then measures were linked to tasks. Those conditions should also logically affect the measures if this was done properly. When thinking about conditions/factors that affect the critical measures, if there are conditions that affect those measures but weren’t previously identified or linked to the parent task, then add them to the conditions directory and update the linkage. Do not overlook conditions that can’t be controlled (recordable) but are important to collect data on to understand and analyze system performance.

NOTE: This also serves as a sanity check of the conditions associated with the task. Previously, conditions were linked to tasks, and then measures were linked to tasks. Those conditions should also logically affect the measures if this was done properly. When thinking about conditions/factors that affect the critical measures, if there are conditions that affect those measures but weren’t previously identified or linked to the parent task, then add them to the conditions directory and update the linkage. Do not overlook conditions that can’t be controlled (recordable) but are important to collect data on to understand and analyze system performance.

Date Completed: _________________________________

NOTE: This also serves as a sanity check of the conditions associated with the task. Previously, conditions were linked to tasks, and then measures were linked to tasks. Those conditions should also logically affect the measures if this was done properly. When thinking about conditions/factors that affect the critical measures, if there are conditions that affect those measures but weren’t previously identified or linked to the parent task, then add them to the conditions directory and update the linkage. Do not overlook conditions that can’t be controlled (recordable) but are important to collect data on to understand and analyze system performance.
c. Use the below table as a guide in assessing the levels of each condition.

<table>
<thead>
<tr>
<th>Effect of Changing Level on Performance</th>
<th>Likelihood of Encountering Level During Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant Effect on Performance</td>
<td>Balanced: Vary all</td>
</tr>
<tr>
<td></td>
<td>Mixed: Vary balanced levels.</td>
</tr>
<tr>
<td></td>
<td>Dominant: Fix dominant level.</td>
</tr>
<tr>
<td>Moderate Effect on Performance</td>
<td>Balanced: Vary all</td>
</tr>
<tr>
<td></td>
<td>Mixed: Vary balanced levels.</td>
</tr>
<tr>
<td></td>
<td>Dominant: Fix dominant level.</td>
</tr>
<tr>
<td>Low Effect on Performance</td>
<td>Low: Fix levels or record level used</td>
</tr>
<tr>
<td></td>
<td>Mixed: Fix levels or record level used</td>
</tr>
<tr>
<td></td>
<td>Dominant: Fix dominant level.</td>
</tr>
</tbody>
</table>

d. The result of this exercise is the identification of levels of controlled conditions that have an important effect on the performance of the SUT and are likely to be encountered by the operator. They will be used to design a test with statistical power and confidence. The descriptors that have a low effect or are encountered infrequently may only be demonstrated.

e. When a single level dominates, testing may focus on the dominant level, with demonstrations for the other levels, if appropriate.

f. Efforts should be made to define factors as continuous vice categorical. Continuous factors often afford greater power, but not always.

d. Meet and discuss proposed response variables, prioritized conditions (factors) and selected descriptors with divisional analyst and 01B CTF.

a. Define the objective of the test (prior step 4c)

b. Identify response variables and their associated thresholds

c. Prioritize conditions with selected factors/levels using the above matrix

d. Develop list of all variations used for designing a statistical test. These variations will be used to create the run matrix. See below example:

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Altitude</th>
<th>Airspeed</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-5K</td>
<td>1-100</td>
<td>RCS A</td>
</tr>
<tr>
<td></td>
<td>5-10K</td>
<td>100-200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-15K</td>
<td>200-300</td>
<td>RCSB</td>
</tr>
<tr>
<td></td>
<td>15K+</td>
<td>300+</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: In this example, the OTD may have determined that low altitude, low airspeed, and airspeeds above 300kts will have a low impact on performance or are not likely to be encountered by the system. They may be considered for demonstration runs, but won’t be included in the statistical DOE. The remaining levels will be used as factors in the design to meet statistical power.

e. Identify disallowed combinations by reviewing the list of factors/levels for combinations that are not testable or realistic (i.e. arctic terrain & hot temperatures, etc).

NOTE: If there are a significant number of disallowed combinations, consideration should be given to splitting the test design into separate stand-alone designed experiments.

f. Review historical data

g. Review known limitations to test
h. Review statistical objectives for the RV

Date Completed: _________________________________

☐ 9. For the response variables selected, estimate the following with 01B CTF and divisional analysts:

☐ a. Anticipated distribution of data (continuous normal, continuous but skewed such as χ^2, binomial (pass/fail), Poisson (small discrete integer values), etc.)

NOTE: Terms/parameters of the distribution can change with factor effects. Often defining the distribution means defining the entire model for the response.

☐ b. Standard deviation (variability) of anticipated data for continuous variables

NOTE: Preferably the standard deviation is estimated from historical or DT data. Sigma can be roughly estimated based on the expected range of data, if required. Subtract the minimum from the maximum anticipated value to derive the range. Divide this range by 4 to get sigma. This approach is valid for normally distributed variables, and becomes riskier as distributions depart further from normality.

☐ c. Anticipated factor effects and effect sizes

 i. Determine main effects and interactions to be investigated. Identify the most limiting/
1. DOE Analyses: analysis of variance, regression, response surface modeling, logistic regression, etc.

2. Non-DOE Analyses: one-sample t-test, binomial test of proportions, etc.

NOTE: The analysis method will be consistent with the objectives for the response variable.

ii. Proposed run matrix

NOTE: The run matrix will be drafted based on the objectives the disallowed combinations, and the anticipated factor effects. Ensure these are understood before calculation.

iii. Power/sample size calculations including confidence, power, sample size, effect size, and any other amplifying notes and assumptions (to be incorporated as notes within the DOE run matrix table, Table C-1 Vignette to Sub-tasks to Conditions matrix).

b. Additionally, 01B will draft tables for the IEF section 2.3 presenting the test power.

i. The first table shows power versus varying sample sizes and effect sizes for the most limiting and/or critical factor effect or interaction

ii. The second table shows power versus varying effect sizes at the chosen sample size for all the other main effects and interactions consistent with the anticipated analysis. Note any correlations here. Also note any significant terms that cannot be estimated

NOTE: The analysis method will be consistent with the objectives for the response variable.

b. Discuss conditions/factors chosen and their operational relevance.

i. For the controlled conditions, list the levels for the condition applicable to this response variable, explain why they are controlled and why the levels were chosen.

NOTE: Anticipated effects can be explained here. Factors can affect several parameters (mean, sigma, etc.) within a model. Detail those effects here as required.

ii. For constant conditions, list the constant level and explain why they are constant

NOTE: “Because the CDD said so” is not an acceptable reason. All justifications must be operationally relevant.

iii. For recordable conditions, explain why they are important enough to record; but not able to be controlled, or why it was chosen not to be controlled.

NOTE: Often a recordable condition can be the most important factor affecting the RV, but just cannot be controlled because of physical limitations (weather), or expense.

Depending on the importance of the recordable condition, the range or levels of the condition can be added to adequately anticipate covariate regression analysis.
c. Explain the test design (full factorial, CCD, etc.). All assumptions should be addressed

 i. Include any disallowed combinations

 ii. Consider inclusion of a summary table of the test points (see below) for complex designs that require more clarity on how the test space is covered

 d. Provide the statistics associated with the design. Explain the operational relevance of the effect size and how it was chosen.

<table>
<thead>
<tr>
<th>Illum</th>
<th>OPFOR</th>
<th>Mission</th>
<th>Attack</th>
<th>Defend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Terrain</td>
<td>Urban</td>
<td>Mixed</td>
</tr>
<tr>
<td>Day</td>
<td>Low</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Day</td>
<td>Med</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Day</td>
<td>High</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Night</td>
<td>Low</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Night</td>
<td>Med</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Night</td>
<td>High</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Date Completed: _________________________________

b. Identify critical measures that clearly should be evaluated via demonstrations. Analysis by demonstration usually applies to measures that will be evaluated qualitatively, under multiple conditions (multivariate), or under recordable and/or constant conditions.

i. Paragraphs in section 2.3 are not required

ii. Vignette DOE notes will identify demonstration runs as part of vignettes that are demonstration only, or within vignettes that are primarily run for DOE completion.

Date Completed: _________________________________

12. Review the critical measures table for any critical measures (non-response variables; unaffected by controlled conditions) that require amplifying information not contained in the MBTD appendices.

NOTE: The majority of the testing should be addressed using experimental design for the response variables (with factors). The sections on simple experiments and one-sample hypothesis tests against a threshold are included for completeness, but are not the emphasis of OT&E.

a. Draft paragraphs for any critical measures requiring associated confidence intervals. Explain the assumptions (distribution, parameters, etc.) like you would for a response variable. Follow the IEF template format and best practice #2

NOTE: The objective is to characterize overall performance using a summary statistic (e.g. mean or median) and an associated confidence interval. A 1-sided interval is often used for comparison to a threshold. A 2-sided interval shows that sufficient accuracy can be achieved in testing this measure. Both forms can be used to justify or confirm a sample size.

NOTE: There are several types of demonstrations: (1) Some measures deemed critical can be evaluated quickly via demonstrations and do not need multiple data points to evaluate (i.e. the ability to load the SUT onto a C-130 may be critical and can be verified by demo’ing it once). (2) Alternatively, demonstrating it several times using different support equipment would be a multi-variate demonstration.

i. paragraphs in section 2.3 are not required

b. Discuss unresolved working level comments at the DWG

Date Completed: _________________________________

13. Ensure all COIs are covered in section 2.3

14. Share the resulting test designs with DOT&E and the program office T&E IPT lead.

 a. Document their comments via email

 b. Discuss unresolved working level comments at the DWG
15. Review the OTD Manual (408), schedule and conduct the DOE Working Group with 01B, 01C representative, & Division A/B code.
 a. Give DOT&E 2 weeks notice for scheduling
 b. Review section 2.3
 c. OTD documents action items and shares with attendees
 d. Action items closed
 e. Schedule E-IPR

16. Meet with the 01B CTF and review the IEF products
 a. Run all appropriate checks/reports in the IEF dB and resolve any discrepancies
 b. Resolve all warnings and errors in the IEF dB
 c. Prepare the E-IPR brief using the template available on the Y:\01C\Best Practices\Briefs
 d. Route draft E-IPR brief to 01B/01C at least 48 hours before the meeting
 e. Be prepared to discuss unresolved COTF/DOT&E/PM related issues
 f. Brief status of Sponsor feedback on Derived/Other measures
 g. Action items closed
OTD IPR #2 Checklist

Purpose: This checklist should be used after an Executive IPR (E-IPR) has been conducted. It walks through the major steps needed to develop vignettes, identify resource requirements and prepare for IPR #2. Products developed during these steps include the vignette to subtask to conditions matrix, the vignette to data requirements to test method matrix and the test event resource matrix.

Following the closure of all action items from the E-IPR, OTDs should have an approved task hierarchy for each COI. The task hierarchy should be linked to measures and conditions, with data requirements identified for each measure. These are required in order to proceed with the development of vignettes.

At the conclusion of IPR #2, OTDs should have completed the vignette matrices included in Appendix C. Test schedule, resources, limitations to test as well as modeling and simulation requirements will also be fully described in sections 3 and 4 of the IEF. The majority of the IEF should be drafted and near readiness for routing for formal review.

Use of the IEF database is required for all IEFs. Most of the tables in the IEF document are produced directly from this database.

CAUTION: Using this checklist does not absolve the OTD of the responsibility for thought or the requirement to understand why they are performing these steps and how to apply the results. If you don’t understand, ask.

NOTE: Vignettes are logical groupings of tasks/subtasks that support executing test events and data collection. While not in and of themselves a detailed test plan, they provide readers with a description of the type of test events OT will execute and the data gathered during each event.

☐ 1. Review the task hierarchy, conditions, measures and the linkages between them.

☐ 2. Obtain DT test plans if available and review them for specific test events that could support gathering of OT data.

Date Completed: ________________________________

NOTE: Vignettes should be built with an eye towards reducing data collection requirements in IOT&E. If OT data collection can be conducted during a DT or IT event, build vignette(s) consisting of tasks that can be assessed prior to the OT phase. Review the task hierarchy and associated measures, and identify those tasks that can be assessed solely in DT/IT phases, those that will be assessed during all phases, and those that can only be assessed during an OT phase of test. Consider creating different vignettes for each.

☐ 3. As an OTD begins to build vignettes there are several things to keep in mind:

 a. DT test plan & schedule (what functionality of the SUT will be available when, what DT’s test events look like and how they intend to collect data against the MOEs/MOSs).

 b. Location of test events

 c. Resource availability

NOTE: The tasks that are able to be executed in a vignette developed to be conducted in a lab, systems integration lab (SIL), or using M&S may be different than the tasks an operator would execute in a real operational environment. Normally this requires creating separate vignettes for each.
d. Look for logical groupings of related tasks that can be combined into an executable test event.

4. Using the IEF database, group related tasks that flow together into logical test events as a basis for each vignette.

 a. Review the task hierarchy and associated measures, and identify those tasks that can be assessed solely in DT/IT phases, those that will be assessed during all phases, and those that can only be assessed during an OT phase. Consider creating different vignettes for each.

 b. Meet with the 01B CTF to discuss vignette options. Building vignettes is a subjective process and can be done many different ways. Ask for and review examples from previous programs.

 c. Ensure that the vignettes will be consistent with collection of data for the critical measures and statistical designs in section 2.3 of the IEF.

 NOTE: OTDs should consider the availability of resources when building vignettes and may create different vignettes as a result. For example, an AW engagement has a clear Detect to Engage sequence of tasks, but due to missile availability, this could be broken into a vignette covering the Detect to ID tasks that could be run numerous times under a broad set of conditions, while a second vignette captures the Engage tasks associated with an actual missile shot under a narrower subset of conditions resulting from the DOE.

 NOTE: At the lowest level, a vignette could be constructed around one low level subtask. On the other end of the spectrum, one vignette may be created to describe an end-to-end test event that captures every task under a COI.

 NOTE: For the IEF, create the full/comprehensive version of each vignette (IOT&E phase). If other phases of test require slight changes, these edits will be done for the test plan.

 DATE COMPLETED: _________________________________

 NOTE: Vignettes may cross COIs – they are not limited to tasks described in one COI. Tasks for multiple COIs that are performed simultaneously or tasks that are common to multiple COIs may be combined into one test event. (e.g. maintenance tasks and data collection for maintenance metrics may be captured in multiple/all vignettes).

 DATE COMPLETED: _________________________________

5. Examples:

 a. Create a vignette capturing all the subtasks under one 1st level task, e.g. “Prepare/Configure” (the first 1st level task for multiple COIs). This group of tasks may lend themselves to a mission planning test event for an aircraft SUT or a loading/prepare to embark vignette for a surface vessel.

 b. Create a vignette that captures all the tasks associated with multiple 1st level tasks, e.g. Search, Detect, Track, ID (common 1st level tasks for multiple COIs). This group of tasks may be logically conducted in one test event.

 c. Create a complete end-to-end vignette for use during IOT&E that captures every task needed to use the SUT for a particular warfare area/COI from start to finish.

 DATE COMPLETED: _________________________________

6. Title and number each vignette. Vignette numbering is based on the phase of test it will be executed in (IT or OT), the primary COI it relates to (#), and the number of vignettes (phase of test-COI-vignette #). Examples = IT 1-2, OT 2-1, etc.

 DATE COMPLETED: _________________________________
7. Ensure the appropriate IA vignettes are captured.
 a. At a minimum, for all systems that exchange information with another system, write an Operational IA Vulnerability Evaluation (OIVE) vignette that looks at the system’s protect, detect, react and restore capabilities.
 b. If the SUT has an IA COI, a penetration test vignette will also be required. IA Test Planning best practices provided templates for building these vignettes. Consult with 01C, for additional guidance.

 NOTE: Penetration testing is conducted by COTF IA Test Team supported by NIOC Norfolk. Resources must be scheduled 1 year prior to testing, and resourced (funding) properly.

Date Completed: ________________________________

8. See the OTD Manual (405, Step 10), the Analyst’s Handbook (chap 8), and the IEF template for additional guidance.

9. Verify that the draft vignettes logically address and relate to the major test objectives for the SUT.

10. Verify that all tasks in the task hierarchy are linked to a vignette. This is a straightforward automated cross-check that can be performed. It won’t tell the OTD if the linkage makes sense, but it will identify any tasks/subtasks that have been overlooked and need to be mapped to a vignette.

 Date Completed: ________________________________

11. Create the Vignette-to-Subtask-to-Conditions Matrix for each vignette.

 NOTE: This table identifies the subtasks captured by each vignette, the controlled and recorded conditions that apply to it, the run matrix and any DOE notes that may apply.

 a. In the IEF dB, review the conditions associated with each of the vignettes. Set the conditions to controlled and recordable as appropriate.

 NOTE: For vignettes with associated response variables, there may be some conditions associated with the vignette that did not apply to the response variable and weren’t used for the DOE, but still apply to the vignette.

 Not all conditions associated with the vignette in the IEF dB need to be set to recordable or controlled. Consider a M&S vignette containing the same subtasks as an at-sea vignette. The IEF dB will show the same conditions for both. But for M&S, several conditions could be neither controlled, nor recordable. Thus, they remain unassigned in the tool.

 b. Input the run matrix (called for by the DOE or multivariate demonstration) into the IEF dB using one of the methods described below:
 i. Use the IEF dB internal run development function to create the matrix
 ii. Export an Excel template for the run matrix from the IEF dB, create the run matrix in Excel, and import the file back into the IEF dB
 iii. Create the run matrix in JMP and import the file into the IEF dB

 NOTE: Importing an excel file to a vignette automatically overwrites any existing run matrix for that vignette in the IEF dB. Edits can be made to matrices following import.

 Conditions and descriptors in the import file must match those used in the IEF dB, or the import will not succeed.
c. Add additional runs to the run matrix for demonstrations outside the DOE.

CAUTION: Depending on the number of controlled conditions, the run matrix can be difficult to set up for printing. Seek CTF assistance in building these tables.

Date Completed: _________________________________

12. Insert any applicable DOE notes for each vignette into the IEF dB. These notes will be provided by the 01B CTF, and must be consistent with section 2.3

NOTE: DOE notes for response variables include the RV, the type of test, which runs apply, and a reference to the paragraph where the statistics are presented. DOE notes for confidence intervals include the critical measure, threshold, which runs apply, type of interval, and interval values. DOE notes can also explain that a vignette is demonstration only, or identify specific runs added for demonstration.

Date Completed: _________________________________

13. Draft the relevant Test Execution sections of the IEF (section 3.1 and 3.2):

a. With the SUT integrated master schedule, review the planned phases of test (DT/IT/OT) and draft the overall Operational Evaluation Approach section of the IEF. This section should lay out the major phases and provide a top-level description of how OT will participate in each.

b. Draft the OT Vignette Strategy section of the IEF. Identify and briefly describe the vignettes that will be used by OT to assess performance of the tasks and collect data

Date Completed: _________________________________

14. Edit the Measures and Data Requirement as needed for each Vignette-to-Data Requirement-to-Test Method (DRTM) Matrix from the IEF dB.

NOTE: Review and update the data requirements identified as part of the IPR #1 checklist. Data requirements should provide the data element (Temp), the unit of measure (degrees F) and the source. Qualitative data requirements need to be defined with enough detail to support the creation of surveys (source) included in the test plan.

CAUTION: The export from the IEF dB will pre-populate the data requirement field with all the data requirements for the measures associated to that particular vignette, but it may require manual manipulation by the OTD.

Date Completed: _________________________________

C. Draft the Schedule of Events section of the IEF. This should outline when the vignettes are expected to be executed (during which test period or test phase). Creation of a table is recommended.

Date Completed: _________________________________

□ a. Set measures to test and non-test in the IEF dB for each vignette. No measures should remain unassigned. All measures must be set to test in at least one vignette

□ b. Verify data requirements for each measure associated with that vignette are captured in this table as expected

□ c. Hide DRs that do not apply to this vignette

NOTE: No DR can be hidden for every vignette. Hidden DRs can be added back to the vignette by repopulating a particular category of DRs, or all DRs. Taking this action will return any hidden DR from the chosen category to the vignette.
a. For IA vignettes, consult with 01C and review the default Vignette-to-Data Requirements-to-Test Method matrix available IA test plan template on the Y: drive. (Y:\01C\Best Practices\IA Best Practices\best practice IA Test Plan Template).

NOTE: The association of data requirements to vignettes (test events) is a useful reference for OTDs when developing surveys, logs, and data sheets to support data collection.

Date Completed: _________________________________

15. Populate the Test Method field in the Vignette DRTM in the IEF dB

NOTE: Test Methods are updated in greater detail when producing the test plan. For the IEF, test methods should be written as ‘notes’; at a minimum under pre-test, test execution, and post-test; retaining knowledge from the time of development. OTDs are highly encouraged to maximize use of test methods while the original plan is fresh in their mind. Writing test methods can help identify data requirements and other key test design components that were potentially overlooked during prior MBTD steps.

a. The Intro field provides a top-level description of how the OTD is going to execute the vignette and what will happen during the test

b. Pre-test includes all things the OTD needs to do to prepare for the vignette, both back at the office and immediately prior to execution

c. Test execution is direction to tester on how to conduct the vignette and identifies where/how the required data will be collected. Test methods should be traceable to the data requirements presented in the vignette.

d. Post-test includes all things the OTD needs to do after the vignette, both back at the office and immediately following execution. Administering surveys and collecting data are common

e. For IA vignettes, reference the Vignette-to-Data Requirements-to-Test Method matrix available in the IA test plan template on the Y: drive. (01C—Best Practices—IA Best Practices)

f. DT Data is collected as a part of pre— or post-test. Ensure test method steps include the collection of DT reports, etc.

Date Completed: _________________________________

16. Review the draft Vignette-to-Data Requirement-to-Test Method matrix as a whole.

a. Verify the subtasks the OTD selected actually apply to the vignette. Incorrectly associating a task to a vignette can bring along measures, conditions and data requirements that do not actually apply to that vignette.

b. Verify the data requirements are comprehensive for the vignette

c. Verify the test method narrative describes not only the things OT personnel will do to execute the vignette, but also how the required data will be collected.

d. Compare the Test Method write-up to the run matrix in the Vignette-to-Subtask-to-Conditions matrix to make sure they are consistent.

Date Completed: _________________________________
17. Determine Resource Requirements for each vignette

a. For each vignette, identify the following
 i. Test articles – number of full/partial systems, specific configuration of the test articles, etc
 ii. Test sites and instrumentation - ranges, labs, unique instrumentation, length of time required
 iii. Test support equipment
 iv. Test targets and expendables - # and type
 v. Operational test force support – this can be as little as an OTD & analyst, or as much as ships, subs, aircraft. The number of flight hours, days of at-sea time, etc should be captured here.
 vi. Simulations, Models and Test Beds – any M&S requirements including labs, software models/applications, pre-faulted modules for M-Demos, etc
 vii. Manpower & Personnel Training – type and number of personnel required with the associated training/expertise requirement
 viii. Special Requirements – Any other non-instrumentation type of requirements (databases, special data processing capability, etc.)

b. Populate the IEF dB with the above resource requirements for each vignette

Date Completed: _________________________________

18. Perform a sanity check of all the vignettes. Having the data requirements, test methods, run matrices, resources and phases of test the vignettes will be executed in, consider whether any of the vignettes should be broken up (or combined) further.

Date Completed: _________________________________

19. Determine Resource Requirement by phase

a. Using the resource requirements for each vignette and the proposed schedule of vignettes in the OT Execution Strategy developed earlier, identify the test resource requirements for each test period (DT-B1, IT-B2, OT-B2, OT-C1, etc).

b. Create the Test Event Resource Matrix in section 4 of the IEF.

Date Completed: _________________________________

NOTE: Fleet service requests must be submitted to 01C fleet schedulers NLT 9 months prior to test.

NOTE: This will serve as the basis for the identification of resource requirements and input for the TEMP. Enough granularity needs to be provided in the IEF to support the generation of OT funding requirements documented in the TEMP.
20. Having completed the data requirements, test methods and resource requirements for each vignette, write the limitations section of the IEF.
 a. Review the IEF template guidance
 b. Draft a paragraph for each severe, major or minor limitation
 c. Ensure the write up addresses the impact of the limitation and any steps taken to mitigate it.

NOTE: The limitation wording is slightly different depending on the phase of test. Limitations for OAs relate to assessing risk, while those for IOT&E relate to resolving COIs.

Date Completed: _________________________________

21. Write the Modeling and Simulation section of the IEF.
 a. Review the IEF template M&S guidance
 b. Identify each model/simulation called for in the vignette resources and discuss them in their own paragraphs.
 c. Address the plan for verification, validation and accreditation. See 01C for all M&S assistance. Review COTF INST 5000.1B for additional guidance.

Date Completed: _________________________________

22. Meet with the 01B CTF and review the IEF products generated.
 a. Run all appropriate checks/reports in the IEF dB and resolve any discrepancies
 b. Resolve all warnings and errors in the IEF dB

CAUTION: Prior to generating the final vignette tables from the IEF dB, check each one, verifying that all measures have been set to test or no-test. This is a common pitfall—if through the iterative process, links of measures to tasks are modified, this may impact the vignettes if they’re already built or drafted. For example, if a vignette is built and formatted and is considered complete, but an additional measure is linked to a task, that measure is also added to all vignettes that cover that task. Someone needs to set it to test or no test for each vignette or the measure and data requirements associated with it won’t be displayed when the vignette is produced.

Date Completed: _________________________________

23. Share the vignette tables and draft IEF with external stakeholders (DOT&E, program T&E IPT, T&E WIPT).
 a. Document their comments via email
 b. Discuss unresolved working level comments at the IPR #2.

Date Comments Received: __________________________

24. Schedule IPR #2 with 01B and divisional A/B codes.
 a. Build a brief using IPR #2 template (available under Y\01C best practices\briefs folder).
b. Provide the following as read-aheads prior to the review:
 i. Vignette to Subtask to Conditions Matrix
 ii. Vignette to Data Requirements to Test Method Matrix
 iii. Test Event Resource Matrix
 iv. Draft IEF (if you don’t have it, don’t go)

25. Conduct IPR #2

 Date Completed: _________________________________

 Attendees:

26. Following IPR #2, close out any action items, finalize the draft IEF and route for signature.
 a. Seek 01B assistance for generation of the final excel tables to be included with the routed IEF. (01B runs macros for the OTD that format the tables appropriately.)
 b. Ensure that all review comments resolved during document routing that apply to the IEF dB are updated in the tool. At final signature, new workbooks should be output from the tool

 Date Completed: _________________________________

 Attendees:

Document Tracking

28. Reviewed by OTC and routed to 01B for comments

 Date Completed: _________________________________

29. Comments received from 01B ______________

 Date Completed: _________________________________

30. Comments Incorporated & Routed to Division A/B codes

 Date Completed: _________________________________

31. Comments Incorporated & Routed to Editors

 Date Completed: _________________________________

32. Editors complete and routed to 01A

 Date Completed: _________________________________

33. Comments incorporated and routed to 00D

 Date Completed: _________________________________

34. Comments incorporated and routed to 00

 Date Completed: _________________________________

35. Create final PDF of signed document in accordance with SOP 13-2.
<table>
<thead>
<tr>
<th>Change</th>
<th>Date Incorporated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated Fishbone Diagram on Page 1</td>
<td>15 June 12</td>
</tr>
<tr>
<td>Removed and updated all references to PINs—guidance has been incorporated into OTD manual</td>
<td>11 Dec 12</td>
</tr>
<tr>
<td>Clarified A/B codes should be invited to TP2</td>
<td>11 Dec 12</td>
</tr>
<tr>
<td>Added guidance for review and creation of Table 2.1 at IPR1</td>
<td>11 Dec 12</td>
</tr>
<tr>
<td>Additional administrative corrections (typos, clarified wording)</td>
<td>11 Dec 12</td>
</tr>
<tr>
<td>Added guidance regarding OTD review of JCIDS documents to the very first step</td>
<td>20 Feb 13</td>
</tr>
<tr>
<td>Updated guidance for WCB. Added clarity to measures, traceability and DRs. Regression note added. Note added on derived/other clarification with sponsor.</td>
<td>04 Nov 13</td>
</tr>
<tr>
<td>DOE section adjusted for latest best practices and agreements with DOT&E</td>
<td>04 Nov 13</td>
</tr>
<tr>
<td>Emphasis on Test methods as notes and other updates to IPR 2 checklist</td>
<td>04 Nov 13</td>
</tr>
</tbody>
</table>