TECHNICAL REPORT 1968
February 2008

Autonomous Underwater
Vehicle Navigation

P. A. Miller
SSC San Diego

J. Farrell

Y. Zhao

V. Djapic

University of California, Riverside

Approved for public release;
distribution is unlimited.

v

SPAWAR
Systems Center
San Diego

SSC San Diego
San Diego, CA 92152-5001



CONTENTS

Introduction
1.1 System Description . . . . . . . . . L
1.2 Notation . . . . . . . . e e e

Model Derivation

Navigation
3.1 Imertial Measurement Unit . . . . . . . . . . . . . . . . .. ...
3.2 Augmented System Equations . . . . . . . .. ... Lo
3.3 Mechanization Equations . . . . . . .. ..
3.4 FError State Equations . . . . . . .. L
3.5 Time Propagation . . . . . . . . . . ...
3.6 Measurement Corrections . . . . . . . . . . . i e
3.6.1 Attitude Update . . . . . . . . . . . ...
3.6.2 Doppler Velocity Log Update . . . . . . .. ... ... ... .. ... .....
3.6.3 Long Baseline Update . . . . . . . . . . ... . ... ... ... .. ...
3.6.4 Pressure Update . . . . . . . . . . . . . ...
Analysis
4.1 Incremental LBL Dropouts, Limited Compass Aiding . . . . . . ... ... ... ...
4.2 Incremental DVL Beam Dropouts, No LBL Aiding . . . . ... .. ... ... ....

Experimental Results

Future Work

References

iii

23

24



© 0 N O Ot e W N

[ T T Tt
=W NN = O

LIST OF FIGURES

Vehicle sensor configuration . . . . . . . . . . .. ... 2
Long baseline interrogation cycle . . . . . . . . . . .. ... .o L. 13
North—East plot of incremental LBL dropout scenario . . . . ... . ... ...... 16
East position error 7;(y) for incremental LBL dropout scenario . . . . .. ... ... 17
Azimuth error p(¢) for incremental LBL dropout scenario . . . . . .. .. ... ... 18
Sound speed error ¢ for incremental LBL dropout scenario . . . . . . . ... ... .. 18
Velocity error 7;(u) for incremental DVL dropout scenario . . . . . . . .. ... ... 19
Accelerometer bias error b, (u) for incremental DVL dropout scenario . . . . . . . . . 20
North, east, and down position error d7; standard deviation . . . . . . ... ... .. 21
Long baseline transponder 1 residual . . . . . . . . .. .. ... L. 22
Sound speed estimate ¢ . . . . . . . ... e 23
Semi-log plots of azimuth and gyro bias error standard deviations . . . . . . ... .. 24
Accelerometer and gyro bias estimates . . . . . .. .. ... 25
Doppler velocity log beam 1 residual . . . . . . .. ... ... ... .. ........ 25

v



EXECUTIVE SUMMARY

This report considers the vehicle navigation problem for an autonomous underwater vehicle with six
degrees of freedom. We approach this problem using an error state formulation of the Kalman filter.
Integration of the vehicle’s high-rate inertial measurement unit’s accelerometers and gyros allow
time propagation while other sensors provide measurement corrections. The low-rate aiding sensors
include a Doppler velocity log, an acoustic long baseline system that provides round-trip travel times
from known locations, a pressure sensor for aiding depth, and an attitude sensor. Measurements
correct the filter independently as they arrive, and as such, the filter is not dependent on the arrival
of any particular measurement. The navigation system can estimate critical bias parameters that
improve performance. The result is a robust navigation system. Simulation and experimental
results are provided.

1. INTRODUCTION

With the emergence of inspection-class autonomous underwater vehicles, navigation and naviga-
tional accuracy are becoming increasingly important. Without an operator in the loop, the vehicle
itself must use sensors to determine its location, orientation, and motion. Many of these unique
sensors rely on acoustic measurements that present interesting challenges. The problem is how
to effectively use all available sensor inputs to provide a continuous and robust estimate of the
vehicle’s navigational state.

One approach is to treat each sensor independently, each measuring a specific state. A position
sensor measures position, a velocity sensor measures velocity, and so forth. This solution, however,
is clearly not robust and does not take advantage of the kinematic relationships between states
and measurements. Consider the situation where sensor performance degrades and measurement
updates become sporadic. If position fixes are not regularly available, how should the position state
evolve? One could dead-reckon with the velocity and heading, then blend this estimate with each
position fix, but is this ad-hoc method optimal?

Here, we present an approach using an error state formulation of the Kalman filter to provide
an optimal and robust solution to the vehicle navigation problem. This report concentrates on the
application of the Kalman filter and development of the model and filter algorithms. It does not
attempt to justify the Kalman filter [1, 2, 3] or make comparisons to other algorithms.

This report is an extension of previous work [4]. Here, we expand upon our approach and
analysis, and reformulate algorithms to provide a more theoretically concrete implementation. The
following section describes the system of interest. Section 2 develops the continuous-time model
for this system, while Section 3 formulates the corresponding navigation equations. In Section 4,
we choose several interesting scenarios to analyze critical aspects of our approach. The final two
sections include experimental results and a discussion of potential future work.

1.1 SYSTEM DESCRIPTION

The particular system of interest is an underwater vehicle with six degrees of freedom. The ve-
hicle propels itself via multiple thrusters, allowing for a variety of dynamic maneuvers. From a
navigation standpoint, we assume that it can rotate and translate in any direction, by actuation or
environmental disturbances. The vehicle’s nominal operating speed is approximately 1 knot, and



it has an operating area on the order of 100 x 100 m? with a maximum depth of less than 50 m.

A unique suite of on-board sensors provide information related to the vehicle’s motion. The
primary sensor is an inertial measurement unit that measures accelerations and angular rates in
three dimensions. This sensor is reliable, but due to noise and unknown biases, it alone cannot
provide sufficient navigational accuracy. Other sensors provide additional feedback. A Doppler
velocity log provides velocities along four beam directions via acoustic Doppler measurements. An
acoustic long baseline (LBL) system measures round-trip travel times between a transceiver on the
vehicle and four transponder baseline stations at known locations. An attitude and pressure sensor
complete the navigation suite. The attitude sensor provides orientation measurements, while the
pressure sensor provides a sense of vehicle depth. We assume the platform-frame sensor locations
are known exactly and that all measurements, except for the LBL, have negligible measurement
latencies. Delay is inherent in the LBL system, and methods to address that delay to enhance
navigation accuracy are a major contribution of this article. Figure 1 illustrates the general sensor
configuration.

Long baseline transceiver

Attitude sensor
Inertial measurement unit
Pressure sensor

Doppler velocity log

Figure 1: Vehicle sensor configuration.

1.2 NOTATION

We use the following notation [5]. For vehicle position and attitude, define tangent plane position
m = [z,y,2]" and attitude 7o = [¢,6,v]". Vehicle position is defined in local tangent plane
coordinates, where x aligns with north, y aligns with east, and z is down. Euler attitude angles
are roll (¢), pitch (f), and yaw (¢). In the vehicle or platform frame, define platform velocity
v1 = [u,v,w]", angular rates vo = [p,q,7]", and linear acceleration a? = [ay, @y, ayw] "

2. MODEL DERIVATION

Given limited knowledge of system dynamics and environmental uncertainties, a kinematic model
is often preferable to a complex dynamic model. More importantly, kinematics are exact, with
no uncertain parameters. Dynamics are not. This kinematic model relates platform accelerations,
velocities, and angular rates to changes in tangent plane position and attitude. It does not account
for vehicle or fluid dynamics, or other environmental forces, thus allowing the navigation algorithms
to be platform independent.



The inertial frame of reference i is at the Earth center and is non-accelerating, non-rotating,
and has no gravitational field. The Earth-center/Earth-fixed (ECEF) frame e is coincident with
and rotates about the inertial frame at a known constant rate, w;/.. On the surface of the Earth
lies tangent frame ¢, which is fixed within the ECEF frame. The inertial acceleration expressed in
the tangent frame is

a _Rt QZ/tQZ/tT +2QZ/tr +Q/t7’ +T s

where Q} /= [w? /tx] is the skew symmetric matrix form of rotation rate cross product of frame ¢
with respect to frame ¢, represented in frame t. Vector r describes the vehicle position relative to
the inertial origin. Solving for i yields

i = Ria' — Q% yr' — 205 it — QL ot
= Ri(f' + G") = Q' — 295/# — !
= '+ (G QZ/tQt/tr ) — 208 /tr - Qt/tr
= f'+ ¢ — 29,

(1)

where vectors f and G represent the specific force and position dependent gravitational acceleration.
Vector g* is the local gravity vector. Note that €, /i = Qije +Qeyy, and Q) = 0.

We use an Euler attitude representation to describe vehicle orientation, where an Euler 3-2-1
rotation sequence [6] defines the relationship between tangent and platform frames. It is important
to understand that each Euler angle describes a rotation about an axis in separate frames. We
exploit this relationship between intermediate frames in the formulation of attitude rates and in the
measurement correction of attitude angles. The combined rotation sequence from tangent frame ¢
to platform frame p is

R} = Ry(¢)Ra(0)R3(v))
chcyp cOsip —s0
= | cysbsp —copsyy  copcyp + sfsgsyy  clso |,
copcst + spsyy  —csg + cpsfsy  chep

with inverse Rl = (R)™! = (RY )T. The velocity vectors in platform and tangent frames are related
by vt = Rf)vf” and
vP = R (2)

The time derivative of the second equation is

P = RP0' + RPv!
= R{(f' + 9" = 200") + (-9

t/pr)R;vp

3)

— 0P =200 " — (U, — )
Rle/eRtvp Qf/pfup,

where we have expressed ¢! in the inertial frame using equation (1). Angular rate Q‘;’.’ Ip is computed
from the gyro measurement by removing biases. Platform acceleration a? is computed directly from
the accelerometer specific force measurement by compensating for gravity and removing biases.

Recall that each Euler angle defines a rotation about an axis in separate frames. To relate the
Euler attitude rates (¢, 6,1) to angular rates in the platform frame, relate rotation axes (i1, j2, k3)
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in their respective intermediate frames to platform frame coordinates (ip,jp,kp). For example,
[ip: Jp kpl " = B3 (O)R{ (¥)[i2, Ja, k2] T Let
wf/p = G + 072 + Pk
= éip + é(cqup — S(JSIA{/‘p) — T,Z.)(Seip — cls¢jp, — chqSl;:p)
= (¢ — ¢sO)i, + (Ocp + 1pcbsd)jp + (Yebep — Osp)k,

be the vector expression of angular rates in platform frame p relative to the tangent frame ¢,
represented in frame p. In matrix form and using notation from Section 1.2, the Euler and platform
angular rates are related by o = Q9 and

where vy = wff/p = wf/p - wf/e, i = [$,0,4]", and
1 0 —s6
Q=10 c¢p chs¢p
0 —s¢ clco

Note that the inverse relationship approaches a singularity as § — 45. It is assumed the vehicle
will not operate near this singularity. If operation near £7 is desired, then an alternative attitude
representation, such as quaternions, would remove this singularity.

After equations (2)—(4) are summarized using the notation from Section 1.2, the continuous-time
kinematic model is

= Ry
i =Q ', (5)
1)1 =a? — RfQE/eR;Vl — Qf/pl/l.

The next section utilizes this model, along with bias and measurement models, to propagate the
system through time and formulate measurement predictions.

3. NAVIGATION

Given system output y, we wish to reconstruct the entire internal state x. From linear systems
theory, we know that if the discrete system

Tr+1 = Pxp + Twy,
yr = Hxy,

is observable, then we can design the observer

Try1 = PTp + L(yk — Ur)
Uk = Hiy,
such that the eigenvalues of (® — LH) lie within the unit circle. This condition is necessary for
asymptotic stability of the error state system, defined by
5:L'k+1 = (q) — LH)5$k
5yk =H (5l‘k

4



Asymptotic stability of the error state system causes dx; to converge exponentially to zero, thereby
estimating x;. We use notation dzy, as opposed to I, to indicate the expected value of the error
rather than the true error. For time-varying systems, Ly must stabilize (®y — Ly Hy) for all time
[7, 8].

Here, we employ the Kalman filter to design L in an optimal manner, given noisy measurements
y. The Kalman filter is optimal in the mean-squared sense [1, 2, 3]. In the following sections, we
formulate system error state equations and apply the Kalman filter. Our formulation revolves
around the system’s inertial measurement unit (IMU), and as such, we describe this sensor first in
Section 3.1. Section 3.2 defines the augmented system equations. These equations model the true
system, while Section 3.3 defines the mechanization equations that provide the navigation state
vector Z. The difference between the actual and mechanized systems is the error state system. A
model for the error state system is described in Section 3.4. We use the error state system to design
the Kalman filter. Section 3.5 applies the Kalman filter time propagation equations

0y = Ppozy (6)
P = P 0 +Qu, (7)

where equation (6) propagates the error state dx and equation (7) propagates the error state
covariance Pj. Section 3.6 applies the Kalman filter measurement correction equations

Ky = Py H{(H.PyHY +Ry)™! (8)
oyr = yr — h(x) 9)
Szt = bz + Ky(Syy — Hidxy,) (10)
P = (I-KyH)P, (11)

to the aiding sensors. Equation (8) computes the optimal Kalman gain, equation (9) computes the
measurement residual, equation (10) corrects the error state estimate, and equation (11) updates the
error state covariance matrix. Circular (i.e., angular) measurements should correct the innovation
(0yx, — Hox, ) to lie on interval [—m, 7). Superscript ~ indicates the a priori state or covariance
at time & immediately prior to the innovation. Superscript T indicates the a posteriori state or
covariance at time k immediately after the innovation. Kalman gain Kj is the optimal observer
gain L at instant k. After a measurement correction, the filter should initialize the a priori state

and covariance to the a posteriori state and covariance for the next filter iteration (i.e., &} = i;j

and ]5];_1 = ]5;)

Recognizing the difference between the error state dz and navigation state # is important. The
navigation mechanization computes & by integration of the IMU data between time instants t
and i1, at which aiding measurements are available. At such time instants, # is used to predict
the measurement. The filter uses the residual between the actual and predicted measurements to
estimate dz7. When dz™T is available, the navigation state 2 correction is

gt =2 +dzt. (12)

After each navigation state correction, error states dx~ and dz ™ are zero since the navigation state
estimate now incorporates this information. Clearly, if we correct £ immediately after each dx
correction, dz~ is always zero, and it is not necessary to propagate dx~ as in equation (6).



3.1 INERTIAL MEASUREMENT UNIT

The inertial measurement unit (IMU) is the primary high-rate sensor. It measures linear acceler-
ations via accelerometers and angular rates via fiber-optic gyros. The IMU effective measurement
point defines the origin of the platform frame. The IMU also provides an accurate time measure-
ment since the last update. This delta time measurement is useful for precise integration, later
described in Section 3.5. We expect this sensor to provide continuous updates without interruption.

The accelerometer specific force and gyro measurement outputs, y, and y,, respectively, are
modeled by

Yo = a? — RVg" + by + 1y (13a)

Yg = wyy, + g + g, (13b)

where (bq,n,) and (by,ng) are bias and noise vectors. Noise vectors n, and ny are distributed

according to N(0,02I) and N(0, 02 ), respectively, and are assumed to be white noise processes
[1]. The acceleration and angular rate estimates are computed as

@ =y, + Rig' — b, (14a)
& =Yg = by (14b)
Bias vectors b, and b, are modeled as random constants plus random walks, where
b = wa  by=0 (15a)
by=w, by =0. (15b)

The driving noise vectors w, and w, are distributed according to N (0,02 I) and N (0, aggl ), respec-
tively.

3.2 AUGMENTED SYSTEM EQUATIONS

Augmenting our continuous-time model, in equation (5), with the models for the unknown param-
eters in equations (15a) and (15b), yields the system state vector

T

e=[nl m v b by c]

The additional parameter ¢ represents our estimate for the speed of sound in seawater. We model
c as a random constant plus random walk with driving noise w. ~ N(0,02), where o, = 0.1 m/s.
This estimate is necessary to calculate round-trip distances from travel times for the long baseline
system, described in Section 3.6.3. The process noise input vector is

-
Tl wl owl wc]

u:[na g Ya Yy

)

where all quantities are mutually uncorrelated, Gaussian, white noise vectors. The augmented true
system equations are therefore

in = Ry

. _ -1 p ot

2 = Q7 (yg — bg — ng — Rjw; )

1 = (Yo + RVg" — by —ng) — RfQﬁ/eRéul — (yg — bg —ng) x 11

. (16)
by = wa
by = wy
¢ = we,



where we have substituted for a” and vs with equations (14a) and (14b), respectively, in preparation
for the development of the error state equations in Section 3.4.

3.3 MECHANIZATION EQUATIONS

The mechanization equations represent the expected value of the true system. Our estimate of the
true system, equation (16), is

= Rii

T2 = Q_l(yg — by waz/e)

1 = (Yo + REg" — ba) — ]%fQE/eRfﬁl — (yg — bg) X i

. (17)
by =0

by =0

& =0

where we assume the gravitation vector ¢' and rotation rate Q’; /e are deterministic.

3.4 ERROR STATE EQUATIONS

The error state equations represent the expected value of the error between the true system and
its estimate, 6 = & — 2. To compute the transformation error between two rotation matrices, we
define a small-angle transformation as ]A%f, = (I — [0px])RL, where (I — [6px]) represents a small-
angle transformation from the true tangent frame to the computed tangent frame [9]. The quantity
dp represents the small-angle error between true and computed frames. The error state vector is
then

sw=1on opl v &by bl sc ], (18)

where dp replaces d7m2. The following relations are useful in the subsequent analysis;

Rl = (I - [6px]
R;, = (I + [0px] ;
R = RV(I + [5px))
RY = RY(I — [5px))
Using the small-angle relationships, we compute the error state equations for each state. The
tangent position error is .
om =1n — M
= RLovy + [6px|RE6vy + [0px|REin (20)
~ 1:2;51/1 — [R;,ﬁl x]6p,
where we have manipulated the terms such that the error state coefficients can be represented in
matrix form. To determine the error state model for §p [10], differentiate the rotation matrix error
6R§) = [5p><]R§), . .
5R§, = [0px] R + [5p><]R§,

P
= [5px] R, + [Fpx)(RLQL,).



and solve for [0px], )
[0p%] = (B, = R,)RY — [0px| RLQ), RY

P t/p
= (R, — R0, )RY — [5p%]9
=, - Réﬁf/pl?f(l — [6px]) = [6px10
~ 0, — O, + O [50x] — (0],

Equivalently, this expression written in vector form is
0p = wijp = Wiy + @y X O
L AL~ ¢ At~ At
= Rpwf/p — Rpwf/p — dw; )y + (Rpwf/p — Wiy) X 0p

= R;éwf/p + [5px]R§)5wf/p - 5wf/t - d}f/t X 0p

(21)
~ Rl (—6by — ng) — 6wl ), — &) x Ip,
where 0w!,, = {—w, /.[sin ¢, 0, cos | T p/On; }én1 and ¢ is the vehicle latitude. The platform velocity
i/t /
error is )
o =11 —1n
~ Af{[gtx] +wh (Ripn) T = (wh, - R;,ﬁl)f}&p
— { (g — bg) <] + QU L b0 — s — g
— [1%]6bg — [D1x]ng + RYSg" + RY[R 01 x]0w,.

(22)

Remaining error expressions for db,, dbg, and dc are trivial and, as such, their derivation is not
shown. The resulting continuous-time error state system is

§i = Féz + Gu, (23)
where . _
0 —[Rnx] R, 0 0 0
Fy =0, 0 0 —R, 0
F = F31 F32 F33 I —[ﬁlx] 0
0 0 0 0 0 0
0 0 0 0 0 0
|0 0 0 0 0 0
Fgl = &uf/t/@m
F31 = Ri){agt/anl + [E;ﬁl x]awf/e/am}
Py = B [gx] + ol (Rin) T = (ol - )T |
Fi3 = —[(yg — BQ)X] - ﬁfgg/eRp
and
[ 0 0 0 0 07
0 -R, 000
G| —1 =mx] 0 00
0 0 I 00
0 0 010
0 0O 00 I|




Due to the relatively small operating area, we assume Fb; and Fj; are approximately zero. Note
that the error state vector contains dp, while the navigation state contains 7. The measurement
correction routines in Section 3.6 will account for the use of dp.

3.5 TIME PROPAGATION

The time propagation routine propagates the navigation state, error state, and error state covariance
through time. For each measurement update from the IMU, the time propagation routine computes
the continuous-time system, the discrete-time system, and then propagates the system state and
covariance. The continuous-time system is F' and G with process noise distribution matrix @,
where matrices F' and G are computed according to equation (23) and Q = E(uu'). We assume
Q = diag(c2I, 05[ , O'gaf , aggl ,02). To compute the equivalent discrete-time system, we compute

the matrix exponential
—F GQGT
Tzexp([ 0 7T }At)

using algorithms from reference [11]. Quantity At is the integration period from the IMU. The

result is 19
. —D d7Qq
=[]

where matrices ® and Qg represent the discrete-time system [12]. Matrix ®(k + 1, k) propagates
the error state dx, and covariance P, , where P, = E(dx, 5:1:,;T>, from time k to k41 according to
equations (6) and (7), respectively. Matrix ()4 represents the discrete-time process noise distribution
matrix at time k, and D is a nonzero dummy matrix. Given Y, matrices ® and @4 are trivially
solved from its sub-matrices,

d(k+1,k) = YTn+1:2n,n+1:2n]" (24)
Qalk) = ®(k+1,E)Y[1:n,n+1:2n], (25)

where Y[ry:7g,c;:co] represents rows rq through ro and columns ¢; through ¢y of the 2n x 2n
matrix Y.

We propagate the navigation state estimate £~ using a predictor-corrector integration algorithm
[13],
xp g = ay + ey, ) At

Th1 = o + f(xh 1, up) Dt (26)
_ 1
Lpy = g(l’iﬂ + Tji1),

where yr = [ya(k),y,(k)]", then correct the resulting attitude angles to lie on interval [—, 7).
Function f(z,y) is the continuous-time mechanization described in equation (17).

3.6 MEASUREMENT CORRECTIONS

In this section, we use the terms sensor and measurement to refer to all sensors other than the IMU.
These aiding sensors are discussed in Sections 3.6.1 through 3.6.4. Each sensor runs independent of
the next, with its own update rate and performance characteristics. Thus, measurement corrections
are asynchronous. As a measurement arrives, it is evaluated and then incorporated into the error
state estimate. If a measurement does not arrive, no calculations are necessary. The algorithm does



not wait for or expect measurements to arrive in an ordered fashion; the error state and navigation
state will propagate according to equations (6) and (26), respectively, via the IMU data, with or
without measurement corrections.

Measurements are evaluated with several sanity checks. One such check verifies that the mea-
surement lies within three standard deviations of its estimate, (Sy, — Hydx, )2 < 9(Hy P, H} +Ry),
where dyj, is the measurement residual and matrix (H Py H ];r + Ry) represents the measurement
covariance. Additional logic is necessary to help ensure that this algorithm does not disregard valid
measurements, especially upon initialization.

Valid measurements correct the error state estimate according to equation (10). The following
sections describe the low-rate aiding sensors and their respective measurement correction. Mea-
surement corrections require a measurement residual dy, sensor output matrix H, and measurement
noise matrix R to evaluate equations (8) and (10). Note that the error state vector contains dp,
while the navigation state vector contains 7. We cannot simply correct the attitude states of &,
as described in equation (12). Instead, we use 7, to correct transformation matrix RY via (19d),
where

RY(ng) = RY (g )(I — [6px]), (27)

and compute 75 from the resulting transformation matrix,

¢+ = arctan2 (Rf[2,3], 73, 3]) (284)

0% = — arctan (3] - (28Db)
Vi (7))

= arctan2 (Rf[l, 9], RV[1, 1]) , (28¢)

where RP[i, j] represents the (i,7) element of matrix R?(3) [12]. Function arctan2(y,z) is the
four-quadrant arc tangent function. To ensure numerical stability, it is necessary to normalize RY
prior to evaluating equations (28a)—(28c).

3.6.1 Attitude Update

The attitude sensor combines four tilt and three magnetometer measurements to produce roll, pitch,
and yaw information. We assume the vehicle dynamics are slow, and as such, the coupling between
the inclinometers and platform acceleration is negligible. We also assume the magnetometer is
calibrated to compensate for hard iron characteristics of the operating region. Momentary magnetic
spikes can easily be ignored. The sensor model is

Ye = M2 + Ne,
where sensor noise n, is distributed according to N(0,2I). We can predict the measurement as
Ye = 1j2,
and compute the measurement residual as

6ye = Ye — de (29)

10



when a measurement arrives. To formulate the sensor output matrix H and measurement noise
matrix R, a theoretical expression for the measurement residual must be determined in terms of
the error state. In this case, an expression for §ny in terms of dp must be found. This formulation
is similar to the relationship between the Euler attitude rates and platform angular rates. Quantity
dne describes attitude error relative to the intermediate rotation axes (i1, j2, /2:3), while dp describes
attitude error in tangent frame (i, j¢, l%t) By definition,

8p = 6y + 6072 + Suks

= 8¢ (cOciy 4 cOsihj, — sOky) — 80(shiy — cbiy) + dupey
= (0¢pchct) — 60s1)iy + (3pchsih + 00c)) e + (6 — dpsO)ky

= 25772,
where
clcyp —syp 0
Y= clsyp cyp 0
—s6 0 1

The theoretical measurement error expression is therefore

6ye = {772 + ne} - {772}
=215 +n,
= Hézx + ne,

where the sensor output matrix is
H:[O 2_10000]. (30)

Note that ¥ ! approaches a singularity as § — +3. The measurement noise matrix is

R=E <(5y5yT>
=F <nen;r> (31)
=acl,

which is positive definite for all time. Quantities Hdx and R represent the mean and covariance,
respectively, of the distribution for dy. When an attitude measurement arrives, the Kalman filter
evaluates equations (29)—(31) and then uses the results in (8)—(12), and (28a)—(28c) to correct the
state estimate. Note that the Kalman filter assumes dp is small; therefore, the attitude sensor
should initialize 72 with the latest measurement when the filter initializes. In Section 4.1, we show
that yaw is observable from the long baseline system when the vehicle has a nonzero velocity, thus
the magnetic compass can be disabled if necessary.

3.6.2 Doppler Velocity Log Update

The Doppler velocity log (DVL) measures velocity via the Doppler effect by first emitting encoded
acoustic pulses from each of its four transducer heads. These pulses reflect off surfaces, such
as the seafloor, and return back to each transducer. The instrument measures the change in
frequency between the pulses emitted and those received, which relates to velocities along each

11



beam direction relative to the reflecting object. In certain situations, one or more beams may
not return valid information. When fewer than three beams return valid information, we cannot
compute geometric transformation [14] to relate beam velocities to instrument frame velocities. It
is possible to alleviate this restriction. Here, we treat each beam velocity as a separate innovation.
This approach does not require bottom lock and incorporates more information into the filter than
an instrument frame correction (i.e., four beam corrections vs. three orthogonal corrections).

Let b = {b1, by, b3, by} be unit vectors along each beam direction. The ith Doppler measurement
is
Yo = (V1 + v2 X £;) - b + N,

which represents the instrument frame velocity along beam direction b;. Vector ¢; is the transducer
head offset from the origin of the platform frame, and n, is sensor noise with normal distribution
N(0,02). The measurement estimate is therefore

Uo = (01 + D2 X £;) - by,
where ¢; and b; are known exactly, with residual

6yv =Yv — @v (32)
= {(1/1 + 1o X El) - b; —i—nv} — {(ﬁl + Dy X 62) . bz}
= b] dvy +b] [6;x]0by + b [£:x]ong + 1.

The sensor output matrix is
H:[o 0 b 0 bJ[tix] 0], (33)
and the measurement noise matrix is

R=E <{bﬂeixJng b {0l [xIng + ”U}T>

= b [t;x]o2T[t; %] " b; + o,

(34)

which is positive definite for all time. Note the significance of the sensor placement in relation to
the gyro bias and variance. Offset ¢; provides observability to the gyro bias in equation (33), while
2 magnifies the effect of the gyro variance in equation (34). We ignore any correlation between
the process noise ny and measurement noise vectors. When a DVL beam measurement arrives, the
Kalman filter evaluates equations (32)—(34) and then uses the results in (8)—(12), and (28a)—(28c¢)
to correct the state estimate. Each beam provides a separate measurement correction.

3.6.3 Long Baseline Update

The acoustic long baseline (LBL) system precisely measures the time of flight of sound waves
propagating through water. At time ty, the vehicle transceiver generates a common interrogate
ping. Each listening transponder hears this ping, each at a different time, then waits a specified
turn-around time and responds. For example, transponder 1 responds 250 ms after hearing the ping,
transponder 2 responds at 500 ms, followed by transponder 3 at 750 ms, and finally transponder
4 at 1000 ms after hearing the ping. No two transponders respond at the same time, allowing the
the turn-around time to identify the transponder. The vehicle receives the response from the ith
transponder at time t;. Figure 2 illustrates the interrogation cycle.

12



/

\
Pl N
P(t;)

Figure 2: Long baseline interrogation cycle. Dotted lines indicate the acoustic measurement. The solid line
indicates an arbitrary vehicle trajectory.

The total round-trip time for the ith transponder measurement is the travel time to the
transponder plus the return travel time plus the turn-around time plus noise, or

Yt = (to) (t:)

where ¢(t) is the speed of sound in seawater and position vectors P; and P(t) represent the position
of transponder i and the vehicle transceiver at time ¢, respectively. The vehicle transceiver position
in tangent frame is P = 1 + R;,E, where £ is the sensor offset from the platform origin. Constant
T; is the transponder turn-around time. Sensor noise n; is distributed according to N(0,0?). The
measurement estimate is therefore

. 1 ~

= gl - Ol
where the transponder position P; and turn-around time 7; are known. The algorithm stores the
current state estimate at time tg, then recalls it to compute measurement residual

0y = Y — Ut (35)

at time ¢;. We address the nonlinear 2-norm expression d(t) = C(t HP P(t)|| by representing it
using a first-order Taylor series approximation about state estimate Z,

od 1 9%d

)+ 5

+Ti7

@]+ 755

_ 5., 04 S a2
d_d+8azT x(a: 95)—1—2!(8%2).r x(a: )"+
od
d+8:13T ox.

The dependence on state estimates at two separate times complicates the formulation of the mea-
surement residual. It is necessary to relate the error state backwards in time to the common
interrogate ping via state transition matrix ®(tg,¢;). The measurement residual is then

ye = {dlto) +d(t:) + Ts +mi } — {dlto) +d(t:) + T}
= |d(to) — d(to)] + [d(u) —d(t)] +n.
)

dd(to) ad(t
dx(ty) + dz(t;) + mny
0w’ 2(to) O (i)

_ [D(tO)CP(tO, t) + D(ti)} S (t;) + i,
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where the sensor output matrix is
H = D(to)®(to, t:) + D(t:). (36)

State transition matrix ®(tg,t;) propagates the error state backwards in time from time ¢; to tg.
At each time step, from time £y to t;, the time propagation routine accumulates transition matrix
O (t;,tp) according to ®(t + At,tg) = P(t + At,t)P(t,t9), where O(t + At,t) is given by equation
(24). When a measurement arrives, the measurement correction routine computes the inverse
relationship, where ®(tg,t;) = ®~(;,t9), and applies the measurement correction. The nonzero
partial derivative terms of matrix D(t) are

adit)| 1 (B (if))T
on{ |, ¢t) || — P
adi@)l 1 (B 15( )7
o7 |, = a0 |m = Py "]
ad(t) 1 R
7;‘@2—@)\ o)
The measurement noise matrix is
R= E<ntnt>zat2, (37)

which is a positive scalar for all time. When the vehicle transceiver emits a common interrogate ping,
the correction routine stores the current state estimate, while the time propagation routine begins
accumulating the state transition matrix. During this time, the filter does not correct the navigation
state according to equation (12) until the last transponder measurement arrives. This practice
is necessary such that we can relate dz(t;) to dz(tg) via ®(to,t;). All intermediate corrections,
including those from other aiding sensors, propagate in dz~. When a measurement arrives, the
Kalman filter evaluates equations (35)—(37) and then uses the results in equations (8)—(11) to
correct the error state. When the last transponder measurement arrives, the filter corrects the
navigation state according to equation (12) and equations (28a)—(28¢). Timeout logic is necessary
to handle the situation where the last measurement does not arrive. After all transponders reply
or timeout, the cycle repeats. To ensure stability during the initialization process, we initialize
diagonal elements of Fyo relating to 67y and dc artificially small.

3.6.4 Pressure Update

Over the vehicle’s operating depths, the Saunders and Fofonoff (1976) relationship [15] between
pressure and depth is nearly linear, thus we model the pressure sensor as

y. = s(m + RL0) + b, + n.,

where s and b, scale and offset the pressure measurement, respectively, and s = [0,0, s,]. Vector ¢
is the sensor position in platform frame. Sensor noise n, is distributed according to N(0,02). The
measurement prediction is then R
yz = 3(771 + Rég) + b27
where we assume constants s, and b, are known. Therefore, the residual can be calculated as
5yz =Yz — gz (38)
= {s(m + RL0) + b +n.} — {s(ih + RL0) + b, }
= sdm — s[f%f,@x]&p +n,.
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The sensor output matrix is then
H= [ s —s[RLx] 0 0 0 0} (39)
with a measurement noise matrix of
R=E <nnT> =02, (40)

which is a positive scalar for all time. When a pressure measurement arrives, the Kalman filter
evaluates equations (38)—(40) and then uses the results in equations (8)—(12), and equations (28a)—
(28¢) to correct the state estimate.

4. ANALYSIS

To analyze our filter implementation, we examine the navigation state error, covariance, and mea-
surement residuals. Here, we consider several scenarios in simulation and study the navigation state
error and covariance. In Section 5, we evaluate the measurement residuals for experimental data.
The navigation state error z, which is only available when the true navigation state is available,
substantiates the filter’s performance. The objective is to drive the navigation state error to zero.
The covariance matrix provides a performance estimate of §z, where the square root of the diag-
onal describes the error state standard deviation. We expect the navigation state error to remain
within three standard deviations of zero. The measurement residuals describe the performance of
the filter’s measurement predictions. These residuals should be white noise when the system and
measurement models approximate the true system.

The vehicle simulation is comprehensive. It models a three-dimensional environment, sensor
performance, vehicle dynamics, and executes the actual vehicle software to approximate real-world
performance. The sensor models are similar to those presented above, where in addition to mea-
surement noise, we incorporate sporadic sensor dropouts and those due to poor geometry and loss
of line of sight. Acoustic sensor models are simple. We do not attempt to model acoustic sound
propagation or multi-path effects, and we assume that acoustic transmissions are instantaneous
with respect to the simulation step size. The vehicle model accounts for vehicle dynamics, hydro-
dynamics, currents, and thruster forces based on experimental data. For analysis purposes, we
assume this model represents the truth model.

It is helpful to understand the observability of the system for analysis. Observability analysis
allows one to determine if it is possible to estimate the error state dx from the output y. Given
system matrix F' and a measurement output matrix H, we can compute observability matrix
O to determine the states made observable via the measurement correction associated with H.
Unobservable states may remain constant or diverge, depending on the model and time propagation
routine. The rate of divergence deserves future discussion. To check observability, construct the

observability matrix
H
HF

0= . 5
HF;n—l

where matrix H is a measurement output matrix or combination of multiple measurement output
matrices H = [HlT ,HQT ,...]T. The rank of O indicates the number of error states observable; if
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O is full rank, we can estimate the entire error state from output y [7, 8]. The dimension of our
system is 16, thus a rank of 16 is necessary to estimate dx. The rank of O is complementary to
the dimension of the unobservable subspace. Clearly, O depends on z for nonlinear systems. We
assume nominal conditions (& = [0,0,0,0,0,1500] ") unless stated.

The scenarios of interest are where different combinations of acoustic sensors drop out. These
sensors, which include the LBL and DVL, are highly susceptible to interference, so it is important
to examine the effect when their respective measurements are unavailable. For each scenario, the
vehicle submerges to 5 m in depth, and then executes a lawnmower search pattern. The leg length
is 40 m, with a row spacing of 5 m. After nine consecutive rows, the vehicle returns to the beginning
of the first row and repeats the mission. The vehicle speed is 0.5 m/s. The acoustic baseline outlines
a 50 x 50 m? box around the operating area. Figure 3 illustrates the mission trajectory. The true
initial conditions are normally distributed about zero with realistic variances, except for the vehicle
yaw angle and the speed of sound. Yaw is uniformly distributed about a circle, and speed of sound
is normally distributed about 1450 m/s with variance (15 m/s)?. All initial estimates are zero or
the first available measurement, except for the speed of sound, which is 1500 m/s. For the nominal
case, the system has full observability, thus we expect to estimate dx and therefore z when all
sensors are functioning.
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Figure 3: North—East plot of one simulated mission from the incremental LBL dropout scenario, where the
solid line represents the navigation estimate and the dashed line represents the true trajectory. The four
circles represent the LBL transponders. For comparison, the small dots represent three and four-range
trilateralization solutions.

All results represent the average of 100 Monte Carlo simulations. The error plots illustrate the
true navigation state error Z and the corresponding standard deviation estimate of dx (divided by
10). All 6z divergence rates are for one standard deviation. Our observability analysis assumes
wi/e = 0 to eliminate the attitude observability gained from the rotation of the Earth.
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4.1 INCREMENTAL LBL DROPOUTS, LIMITED COMPASS AIDING

First, consider the ship-hull inspection scenario. Operators place one LBL transponder at each
corner of a ship and deploy an inspection vehicle. The vehicle executes several passes around and
underneath the hull, searching for objects of interest. In this scenario, the keel frequently obstructs
line of sight between the vehicle and one or more transponders, and, due to magnetic anomalies,
vehicles typically operate without a magnetic compass. To illustrate the system performance in
this scenario, we sequentially drop out LBL transponders. Transponder one fails at 600 seconds,
followed by transponders two, three, and four at 1200, 1800, and 2400 seconds, respectively. Yaw
aiding is only available during the first 30 seconds of the mission, which allows the algorithm to
estimate 72 such that dp becomes small before disabling the compass. The DVL, pressure, and
inclinometers continue to aid the system. Figures 4, 5, and 6 illustrate the performance of the east
position, azimuth, and speed of sound error states, respectively.

On interval ¢ € [30,600) seconds, where four transponders are responding and the compass
is disabled, the nominal system has rank(Q) = 15. The unobservable subspace ¥, spans linear
combinations of {0m;(x,y),dp()}. This result is intuitive. Clearly, we cannot observe azimuth
when the vehicle is stationary. Observability analysis indicates that velocity in the horizontal
direction promotes O to full rank; vertical velocity does not. Vehicle rotation, where vo(r) # 0,
also promotes O to full rank.

The loss of one transponder does not affect the observability of the nominal system. The
unobservable subspace remains unchanged. Velocity in the horizontal direction promotes O to full
rank. Rotating, however, does not promote O to full rank. The unobservable subspace transforms
where linear combinations of {0n;(x,y),dp(),dc} are not observable. Eliminating dc from the
error state vector allows this maneuver to achieve full observability.

Losing two transponders increases the dimension of ¥, to 2, where 3., spans linear combinations
of {dm (z,y),0p(¢),dc}. Velocity in the horizontal direction no longer achieves full observability.
The algorithm cannot differentiate between certain linear combinations of én; (z,y) and dc. To im-
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Figure 4: East position error 7; (y) for incremental LBL transponder dropouts and limited compass aiding.
LBL transponders drop out at multiples of 600 seconds. The oscillations in standard deviation correlate to
the vehicle trajectory and its relationship to each transponder.
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Figure 5: Azimuth error p(v) for incremental LBL transponder dropouts and limited compass aiding. LBL
transponders drop out at multiples of 600 seconds. The true azimuth error is computed using equation
(19a).
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Figure 6: Sound speed error ¢ for incremental LBL transponder dropouts and limited compass aiding. LBL
transponders drop out at multiples of 600 seconds.

prove results, one could invest in aiding sensors for dc or assume the speed of sound is deterministic.
Elimination of dc from the error state vector makes O full rank for nonzero horizontal velocities. For
small operating regions, assuming a constant sound speed may produce acceptable results. Figure
6 shows that the covariance of dc converges prior to the loss of the second transponder. Since the
driving noise is small, the Kalman gain K is small and the estimate remains steady over interval
t € [1200, 1800) seconds.

The loss of the third transponder results in divergence. Figures 4 and 5 indicate the divergence
rates for east position error and azimuth error, respectively. On interval ¢ € [1800,2400) seconds,
where only one transponder operates, rank(Q) = 13 for zero velocity and ¥, spans linear combina-
tions of {0n1(x,y),dp(1)),dc}. For nonzero horizontal velocities, rank(Q) = 14 and ¥, spans linear
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combinations of {dn (z,y), dc}. Losing all transponders reduces observability to 11 states and %,
spans linear combinations of {dn1(x,y),dp(¥)}, {0by(2))}, and {dc}.

Note that as ||[P; — P(t)|| — 0 in equation (36), 8¢ becomes weakly observable. Thus, for small
area searches such as the scenario presented here, the algorithm may be unable to estimate dc
accurately as a result of the LBL sensor performance characteristics. We assume o, = 1.0 ms and
o. = 0.1 m/s. Figure 6 shows that we cannot estimate the true speed of sound within 5 m/s for
the given scenario.

4.2 INCREMENTAL DVL BEAM DROPOUTS, NO LBL AIDING

Consider the scenario when the LBL sensor is unavailable and the DVL begins to malfunction.
Beam one fails at 200 seconds, followed by beams two, three, and four at 400, 600, and 800 seconds,
respectively. The attitude and pressure sensors continue to aid the system. Figures 7 and 8 depict
the performance of velocity error 1 (u) and accelerometer bias error by(u). Initially, the north
and east error states, as well as the speed of sound, are not observable, and rank(Q) = 13. The
unobservable subspace spans linear combinations of {07, (z,y)} and {dc}. This result is expected
since no sensors aid position or speed of sound. When beam one fails, there is no additional loss
in observability. Subspace 3, transforms, but the general relationships remain the same. Figure 7
shows only a slight decrease in performance.
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Figure 7: Velocity error 7 (u) for incremental DVL beam dropouts and no LBL aiding. DVL beams drop out
at multiples of 200 seconds.
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Figure 8: Accelerometer bias error Ba(u) for incremental DVL beam dropouts and no LBL aiding. DVL
beams drop out at multiples of 200 seconds.

The performance resulting for a loss of a second beam depends on the particular beam lost. If
the remaining beams lie within perpendicular planes, the unobservable subspace remains the same
dimension and the performance loss is subtle. If the remaining beams lie within the same plane, the
effect is detrimental. Our simulation reveals this condition, where the dimension of ¥, increases
to 5 and the rank of O drops to 11. Linear combinations of {én;(x,y),dv1,0b,} and {dc} are not
observable. From Figure 7, we see that sometimes the system excites observable modes and the
error state and covariance briefly converge. To understand this behavior, we perform a separate
observability analysis for different conditions.

For nonzero velocity, such as when the vehicle is tracking the segment between two waypoints, >,
has dimension 5. For nonzero angular rates, such as when the vehicle achieves a waypoint and ma-
neuvers towards the next waypoint, 3, has dimension 4. Linear combinations of {dn (z,y), 0v1, db, }
and {dc} are not observable for both cases. Finally, when the vehicle has a nonzero roll or pitch
angle, Y, has dimension 3. For this condition, the unobservable subspace is similar to a single
beam failure. The oscillations in Figure 7 correspond to the trajectory of the vehicle. At each
waypoint, the vehicle maneuvers (with nonzero angular rates, and a slight roll angle) towards the
next waypoint and the solution converges. When tracking the segment between two waypoints, the
solution diverges. Losing a third beam is similar to the previous case, where the dimension of ¥, is
5. The performance loss is subtle over interval ¢ € [600,800). The divergence rates are comparable
to a two-beam failure.

A total loss of the DVL causes divergence rates to increase. The divergence rate corresponding
to velocity error dvq(u) is 5.5 mm/s? and to accelerometer bias error db,(u) is 2.4 x 1073 mm/s3.
The rank of O drops to 9 states, and the system can no longer maintain an acceptable level of
performance. Note that this scenario illustrates the worst case. Intermittent beam dropouts result
in only a slight decrease in performance due to an effective lower update rate.
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5. EXPERIMENTAL RESULTS

The following experimental results are from a demonstration at the Autonomous Underwater Vehi-
cle Festival (AUVFest) in 2007. The mission plan was to submerge to 3 m in depth for 2 minutes,
then execute two sets of three-dimensional waypoints at 1 knot. The first series of waypoints con-
sisted of vertically stacked legs between two waypoints. During this phase, the navigational goal
was to observe the unknown parameters (yaw and biases) before proceeding to the second series
of waypoints underneath a barge. The second series of waypoints consisted of a lawnmower search
pattern in an continuous loop, similar to the scenario presented in Section 4. Due to severe mag-
netic interference from the barge, we chose to operate the vehicle without aiding the yaw angle
with the magnetic compass. The acoustic baseline outlines a 36 x 9 m? box around the second
series of waypoints. Since the true state is not available, we present analysis of select error state
covariances and measurement residuals. Note that the sensor data presented here is identical to
that presented in reference [4]; however, here we reprocessed the raw data through the algorithms
presented in this report.

Position accuracy is a critical metric for inspection-class vehicles. This information allows
operators to localize objects of interest, reacquire contacts, and navigation through complex envi-
ronments. Figure 9 illustrates the estimated standard deviation of the north, east, and down error
states during the AUVFest demonstration. These results are consistent with the simulation results
in Figure 4. The convergence is dependent on the acoustic baseline geometry, vehicle trajectory,
and several important factors. These factors include accuracy of the baseline calibration, estimate
of the speed of sound, and the estimate of the vehicle attitude.

0.45
0.4

—

= 0.35

m

om(y) lo

0.3 /

0.25
0.2
0.15}

1 S

0.05f  Om(@)lo

om standard deviation

om(z) 1o

Y

0 500 1000 1500 2000 2500
Time (s)

Figure 9: North, east, and down position error dn; standard deviation. The standard deviation estimate
converges to 13 cm, 17 cm, and 0.7 cm for north, east, and down position errors, respectively. These results
are subject to the baseline configuration and do not necessarily mean 7, is this accurate.

We determine the acoustic baseline geometry prior to deployment via acoustic calibration. Using
a spare transponder, the calibration algorithm measures round-trip travel times to each transponder
and among all transponders. The algorithm assumes the relative organization of transponders to
formulate a geometric solution, which provides estimates for the transponder locations and the
speed of sound. For our demonstration, it estimated a sound speed of 1491 m/s. The transponder
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locations are in a local coordinate system, where transponder 1 identifies the origin and the vector
from transponder 1 to transponder 3 defines the y-axis. We transform these coordinates into tangent
plane coordinates for navigation. The current hardware implementation requires us to perform this
procedure prior to operating the vehicle. It is not possible to estimate the baseline online with our
current hardware. Clearly, a poor baseline calibration will degrade performance.

Analyzing the LBL round-trip measurement residuals provides insight into the baseline cali-
bration. Figure 10 represents the measurement residuals for transponder 1. Several features are
apparent. First, the residuals do not resemble white noise. Second, approximately 7 percent of
the data lies beyond three standard deviations of its expected value. We attribute these erroneous
measurements to acoustic noise and multi-path effects. Simple filtering techniques tend to produce
inconsistent results due to the slow update rate and position uncertainty. Our current algorithm
assumes all measurements are valid. Another notable feature evident in the data is a profound
oscillation. This oscillation is evident in all transponder residuals and is consistent with a poor
baseline calibration in simulation. Simulation results confirm that misalignment of one transponder
will hinder performance of the entire system. The oscillation correlates to the vehicle trajectory.
Figure 9 also shows an oscillatory pattern in the north and east error state standard deviations.
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Figure 10: Long baseline transponder 1 residual. This residual exhibits an oscillatory pattern that is consis-
tent with baseline misalignment and the vehicle trajectory. All transponder residuals exhibit similar patterns.
The horizontal lines indicate one, two, and three standard deviations about zero, where c = vHP-H ' + R.

Inaccuracies in the speed of sound estimate can also cause oscillations in the round-trip mea-
surement residuals. Figure 11 illustrates the estimate of the speed of sound. The calibration routine
estimated 1491 m/s. The navigation algorithm, however, converged near 1420 m/s, which is unreal-
istic, given environmental conditions. Possible explanations include unknown biases, scale factors,
and inaccuracies in the sensor clock frequency.

The azimuth error is of particular interest since yaw is an essential control signal and dp(v)) is
only observable via the long baseline system. Poor estimation of error state dp(v), and dp, generally,
will result in inadequate navigation and control performance. Figure 12 illustrates the azimuth and
corresponding gyro bias error standard deviations. The azimuth error dp(y)) standard deviation
converges to 0.5 deg. This result does not necessarily mean p(v)) is this accurate, however, it is
consistent with the simulation results in Figure 5. Note that the performance specifications for our
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Figure 11: Sound speed estimate ¢. Thin lines indicate three standard deviations beyond the estimate. The
estimate converges to approximately 1420 m/s, which is suspicious, given the environmental conditions.

fiber-optic gyro include a bias stability of <20 deg/hr and random walk of <0.4 deg/ hre.

Estimation of the unknown accelerometer and gyro bias parameters is a key aspect of our
approach. Poor estimation of these parameters leads to inaccuracies in the time propagation of the
navigation state vector, and thus poor measurement predictions for the aiding sensors. Figure 13
illustrates the convergence of the unknown bias parameters. All parameters converged to reasonable
values within the first 500 seconds. The convergence rate is subject to the aiding sensors.

Figure 14 illustrates the measurement residuals for DVL beam 1. Initially, the residuals are
noisy as the estimates for platform velocity, attitude, and biases estimates are converging. After
the filter reaches steady state, the residuals resemble white noise. Residuals beyond three standard
deviations are ignored.

6. FUTURE WORK

The experimental results indicate that inaccuracies in the acoustic baseline will degrade perfor-
mance. The algorithm presented in this article does not attempt to estimate the individual
transponder locations, nor does it account for uncertainty in the baseline. To improve results,
it may be necessary to estimate the baseline as well as unknown parameters, such as the clock
scale factors and biases. Recent advancements in acoustic baseline sensor capabilities permit more
sophisticated algorithms. These capabilities include baseline measurements via acoustic relaying,
Doppler shift measurements, and bearing measurements. It is also possible to communicate infor-
mation among acoustic nodes.

Baseline measurements via acoustic relaying provide travel time measurements between transpon-
ders. This information permits integrating calibration routines into the navigation algorithms. Con-
sider the following measurement cycle, where the objective is to obtain an estimate of the travel time
between transponders A and B. To initiate the cycle, the vehicle V interrogates A for the travel
time between A and B. Transponder A receives this request from V, waits a known turn-around
time, then interrogates B. Transponder B receives this request from A, waits a known turn-around
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Figure 12: Semi-log plots of azimuth and gyro bias error standard deviations. Azimuth error §p(¢) standard
deviation converges to 0.5 deg. Gyro bias error §b,(z/) standard deviation converges to 1.5 x 1072 deg/s.

time, then replies. Finally, transponder A receives the reply from B, and then transmits the travel
time measurement to the vehicle after a known turn-around time. Since the vehicle can hear the
communications between A and B, four pieces of information can be extracted from this measure-
ment cycle. The vehicle obtains travel times for V—A4—V, V—-A4—-B—V 6 V—-A—B—A—V, and
the direct measurement A— B— A. This capability allows navigation algorithms to make intelligent
LBL measurement cycle decisions to optimize overall system performance. Further performance
can be obtained by manipulating the turn-around times as a function of vehicle position in order
to maximum the update rate.

Doppler shift measurements allow the vehicle to measure the relative velocity between the
vehicle and the transponder. Unique encoding in the acoustic communications makes this capability
possible. The corresponding measurement correction is similar to the correction presented in Section
3.6.2, however, in this case the measurement direction is not deterministic.

Bearing measurements are possible using an ultrashort baseline (USBL) configuration fixed
to the vehicle. The USBL is a method of underwater acoustic positioning where the transceiver
incorporates multiple hydrophones, all within a half-wavelength of each other. By computing the
relative phase between hydrophones, the bearing of the acoustic source can be resolved. Bearing
measurements are particularly attractive, as they could provide frequent measurement corrections
while receiving time-consuming acoustic communications from topside.

Clearly, additional sensors and/or higher quality sensors will improve performance. In this re-
port, we formulated a robust navigation algorithm for autonomous underwater vehicles using an
error state formulation of the Kalman filter. The algorithm incorporates unique acoustic sensors,
such as the Doppler velocity log and a long baseline system, and can estimate critical bias param-
eters to improve performance. Future work will address inaccuracies in the acoustic baseline to
improve results further.
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Figure 13: Accelerometer and gyro bias estimates. Biases converge to reasonable values quickly.
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Figure 14: Doppler velocity log beam 1 residual. The dashed lines indicate three standard deviations, where
o=+ HP-H' + R. Residuals beyond three standard deviations are ignored as indicated by the x marker.
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