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Abstract 
 
The ability to acquire and respond appropriately to targets or obstacles, moving or stationary, while 
underway, is critical for all unmanned mobile robot applications. This is achieved by most animate 
systems, but has proven difficult for artificial systems. We propose that efficient and extensible 
solutions to the target acquisition, discrimination and maintenance problem may be found when the 
machine sensor-effector control algorithms emulate the mechanisms employed by biological 
systems. In nature, visual motion provides the basis for these functions. Because visual motion can 
be due either to target motion or to platform motion, a method of motion segmentation must be 
found. We present a solution to this problem that emulates natural strategies, and describe its 
implementation in an autonomous visually controlled mobile robot. 
 

The Problem of Motion Segmentation 
 

Motion segmentation is used here as the process of identifying the 3-D spatial location of a unique 
source of motion from the optic flows created by one or more independently moving objects in the 
visual field. Motion segmentation is a greater problem than identifying and localizing a source of 
motion because the observer himself may also be moving in a complex visual space causing all 
other objects, whether stationary or moving, to contribute to the optic flow though induced motion.  
 
Consider a person driving his car down a busy street. In the course of driving, the driver uses 
saccades to select targets upon which to fix his gaze, and pursuit eye movements to hold his gaze 
upon his selected target. These targets may be other moving cars, pedestrians, billboards or other 
objects resting on the ground. While the relative target motion is minimized by the fixation 
mechanisms, images of the objects in the foreground and background relative to the target will 
continue to contribute to the optic flow on his retina during target fixation due to the motion of the 
car as well as to the pursuit eye movements. This flow can be non-uniform in direction as well as 
speed, depending upon the distance to the objects and their position with respect to the target and 
the relative direction of gaze with respect to the direction of travel of the car. Still, new targets are 
quickly noticed in the driver’s peripheral vision, especially if they are moving independently of 
their surround. The mechanism that draws attention to these new targets is the focus of our interest 
in motion segmentation. 
 
Studies of eye movements of drivers have shown that unusual motion is a strong attractor of 
attention  (Thomas, 1969). For example, a car that takes off from the parked position is irresistible, 
so is a blinking light, like a turn indicator, or a bouncing ball that appears across the traffic. While 
the driver most often notices objects that are themselves moving, motion in itself is inadequate to 
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guarantee attention. On a busy street many objects are in independent motion and yet are easily 
ignored. The common factor in the events that attract the attention of automobile drivers apparently 
is the unpredictability of the motion. When a motion parameter changes, it is temporarily 
unpredictable. 
 
Consider now the mechanisms that may be employed to identify and attend to the location of 
independently moving objects. One such mechanism may null the common elements of motion, 
thus favoring the unique. Center-surround interactions, similar to those that provide pattern 
enhancement (Kuffler and Nicholls, 1977), could be used to compare the motion of small objects 
with the motion of the background. Such mechanisms have been described for the Hawk Moth 
(Collett, 1971), for the optic tectum of birds (Frost et al., 1990), for the tectum of cats (Sterling and 
Wickelgren, 1969), for the cat visual cortex (Jones, 1970), and for the primate medial temporal 
cortex (Allman, et al., 1985; Tanaka, et al., 1986; Tanaka, et al., 1993). Essentially, the center-
surround mechanism suppresses the response to motion in the center of a receptive field if the 
motion in the surround of the receptive field is in the same direction. If the motion of the surround 
is in the opposite direction to the motion of the center, the response to the motion in the center can 
be enhanced. The center-surround mechanism could be speed independent as nearby objects 
generate optic flows with greater speeds than do distant objects during auto translation but are not 
perceived as uniquely moving. 
 
The center-surround mechanism accomplishes a form of spatial prediction; the surround predicts 
the motion of the center. If both the surround and the center changed direction of motion together, 
this change would not be noticed at the output. Spatially consistent motion could be expected 
during induced motion, but regions of inhomogeneous contrast, such as a spot on the plaster wall, 
could dominate attention even during induced motion for lack of an adequately moving surround. 
That it does not do so suggests either that the surround involves the entire visual field, that there is 
in addition a mechanism of reafferent inhibition, or that the consistent motion of the spot 
contributes to its predictability and insignificance. Of course, all three possibilities could 
participate.  
 
The possibility of integration over the entire visual field is reduced, however, by the absence of 
long range connections in either the subcortical or cortical visual areas. Yet, the size of the 
receptive fields of cortical elements is known to increase in sequential visual processing areas 
leading away from the primary visual cortex. Feedback from later motion processing areas, such as 
the dorsal region of the medial superior temporal cortex (Tanaka et al., 1993), could provide global 
motion information to the cortical region or regions responsible for motion segmentation. 
 
The difficulties in summarizing the optic flow globally for an active vision system are great. In 
primates the bilateral organization of the nervous system allocates half of the visual field to one side 
of the brain and the remaining half of the visual field to the other side of the brain. Thus integration 
of visual information in one half of the brain generally does not cover the entire visual field, but is 
limited to the contralateral hemifield. Furthermore, motion analysis takes place in the cortex on a 
projected field that has undergone a log-polar mapping from the retinal surface (Tootell et al., 
1982). Global patterns of motion on the retinal surface are quite different in the cortex following 
this log-polar mapping. The log-polar transformation simplifies the motion patterns due to 
translation and rotation on the Z perceptual axis, resulting in parallel flows, but complicates the 
motion patterns of translations on the X and Y perceptual axes. Thus on the occasions when an 
observer is looking at a target that is not in line with his direction of travel, the patterns of optic 
flow on the cortex of other non target objects will differ in direction between the upper and lower 
visual field quadrant projections.  
 



The direction and magnitude of the motion components of fixed non-target objects will depend 
upon the direction of travel of the observer relative to the target and of the location of the other 
objects relative to the target and observer. Objects located on either side of the target on the 
distance dimension will move in opposite directions. Objects proximate to the observer will move 
faster than objects located beyond the target. Objects located on the same side of the target both on 
the distance dimension and on the lateral dimension will be consistent in direction but not in 
magnitude. Therefore, only under a few conditions is the integrated motion of the global motion 
field descriptive of common motion. 
 
One such condition is when the observer is moving in the direction of the target upon which he has 
fixed his vision. Then the motion of new non-rigid moving objects in the peripheral visual fields 
will have expansion and rotation components that clearly differ from the background. The 
center/surround mechanisms described above can enhance these differences. When, however, the 
observer is moving lateral to the target but maintaining a visual fix upon it, the determination of 
unique motion is more complicated. Even within a quadrant, the background motion can be 
inconsistent depending upon the distance of the fixed objects relative to the target. However, this 
motion parallax can provide powerful depth cues, and when once established could be used to 
mediate the prediction of background motion for center-surround comparisons. We cannot rule out 
the possibility that global measures of field motion participate in motion segmentation, but the 
computational difficulties involved militate against it. We also suspect that nature selects the 
simplest solutions to any computational problem.   
 
Reafferent suppression of anticipated optic flow upon the execution of eye, head, or body 
movements (with or without feedback from either the vestibular or proprioceptive systems) would 
require considerable predictive accuracy of the resulting motion patterns given any of a great 
number of movements. This is also unlikely because it would require in addition some information 
about the source of the visual contrast. Proprioceptive and vestibular input do contribute to image 
stabilization by reflexes that move the eyes in a direction opposite to the motion of the head. The 
calculations required to do this are much simpler than calculations required to predict the optic flow 
resulting from a movement of the eyes or head. The stabilization is effective only for the immediate 
region of visual fixation anyway. Motion still is generated in peripheral vision with a stabilized eye 
during head movements. Thus the remaining likely mechanism for suppression is temporal 
consistency. The temporal consistency of a local motion vector is easily calculated, requiring only 
the persistence of the previous state. Then, if the trajectory of a moving spot, locally determined, is 
either consistent with its immediate surround or with itself over time, it may be ignored. The 
evidence suggests that to command attention, the motion of an object must be both spatially and 
temporally unique. Therefore, the vision system could be primarily calculating the second 
derivative of a spatio-temporal function (acceleration). 
 
For the purpose of prediction, change in a motion vector is not easily assessed within a receptive 
field. This is because the motion of an object takes the object across receptive fields in a short 
period of time. When the motion has been detected and assessed, the target has moved on. 
However, within certain spatial and temporal limits, the activity resulting from directed motion can 
persist and influence, through lateral projections, the activity of the output elements along a 
direction determined by the previous activity. In this way a projection of inhibition could be used to 
suppress predictable motion. Such a projection is consistent with the network organization that 
subserves basic motion analysis. That is, no new organization need be invented to assess the change 
in the pattern of motion, the process only needs to be repeated, like taking the derivative of velocity 
to assess acceleration. The final output of the motion segmentation process then may represent a 
region of visual space that contains new (unpredicted) motion that differs from its surround. 
 



The 5B layer of the visual cortex is a good candidate for the final output of the motion segmentation 
process for it projects to the superior colliculus (tectum in amphibians), which integrates activity to 
determine the next target location. As motion information is filtered through cortical layers or 
between processing stations on its way out to layer 5B, its uniqueness could be assessed by the 
above spatial and temporal criteria. 
 

Implementation of the Algorithm 
 

The motion segmentation algorithm was built on previous models of biological vision (Blackburn et 
al., 1987; Blackburn and Nguyen, 1990, 1994). First in our implementation of motion segmentation, 
the activity in the surround of each motion detector (Y6B) is integrated. We set the outer radius of 
the surround at approximately 32% of the lateral dimension of the surface of the processing layer, 
while the inner radius of the surround, which is exempt from integration, was set at about 8% of the 
surface dimension, so these regions of integration are actually quite large. As the resolution of the 
processing layer is increased the relative dimensions of the regions of integration can be reduced. 
 
surroundcd,i,j = Σa,b Y6Bcd,i+a,j+b, 
 
where the subscript cd refers to one the four cardinal directions on the log-polar transformed 
computational plane of motion sensitivity that we currently analyze (down d, up u, right r, and left, 
l), subscripts i and j index the location of the direction detector on the computational plane, and a 
and b range from the dimensions of the inner radius to the dimensions of the outer radius. 
 
Second, the input to the unique motion detector (Y5B) from the current motion detector is 
suppressed by residual activity of like motion detectors that reside geometrically in its trail (Y6Bt). 
For example, the output of motion detectors that represented motion to the right in a local region of 
the computation plane, would be inhibited by the short term history of rightward motion in 
detectors located immediately to its left on the plane. In this way, attention to continuous motion is 
soon suppressed. At the same time, both surround inhibition of contemporary motion and 
feedforward inhibition of the motion history combine to enhance and focus the output of unique or 
unusual motion. 
 
Y5Bd,i,j = (Y6Bd,i,j - Y6Btd,i-k,j)*surroundu,i,j / surroundd,i,j, 
 
Y5Bu,i,j = (Y6Bu,i,j - Y6Btu,i+k,j)*surroundd,i,j / surroundu,i,j, 
 
Y5Br,i,j = (Y6Br,i,j - Y6Btrr,i,j-k)*surroundl,i,j / surroundr,i,j, 
 
Y5Bl,i,j = (Y6Bl,i,j - Y6Btl,i,j+k)*surroundr,i,j / surroundl,i,j. 
 
Positive activity in the output layer (Y5B) is then sent to the tectum where it competes in the 
selection of new targets. 
 

 
Application to an Autonomous Mobile Robot 

 
The objective of our application was to develop an  autonomous  mobile robot capable of  visual 
target detection,  tracking, and trailing.  Specifically, the robot is tasked with following  a human 
walking through an office complex.  For a demonstration of autonomy, all  sensor-effector loops 
had to be completed on the robot, without external assistance in the  form of target designation or 
environmental modeling.  In order to be applicable to unstructured environments the robot had to 
accomplish this  task without the aid of any explicit a priori knowledge of the floor plan, or the aid 



of any special codings or markings in the environment, including any  special treatment of the 
target.  Vision was the only means by which the robot was  permitted to gain information about the  
external environment.  Further, only visual motion information was used. Because of the visual 
complexity of the office complex, the robot visual system had to segment the unique motion of the 
walking human from the induce motion of the background in order to accomplish acquisition and 
maintain the target during tracking and trailing. 
 
 

     
Fig 1.  Visual-motor functions and relationships                           Fig 2.  The autonomous visually                       
                                                                                                   guided robot trailing a walking  
                                                                                                   human in a cluttered room. 
 
 
We fitted a mobile robot with video camera, pan and tilt mechanism, on-board computer and 
biologically  based visual-motor control algorithms. The above motion segmentation algorithms 
were added to the robot control algorithms developed in  earlier work (Blackburn and Nguyen, 
1994). 
 
Figure 1 diagrams the various visual-motor functions of the robot. Because the robot visual system 
is essentially reactive, the behavior of the animate target determines the behavior of the robot. 
Targets are detected by a model of the vertebrate optic tectum, using a biased cooperative 
mechanism between hemifields.  The algorithm determines the center of mass of potential targets 
from the unique motion information from the Y5B layer, and directs motors controlling the pan and 
tilt mechanism to bring the center of the receptor field upon the target. A smooth pursuit reflex, 
which takes input from motion detectors in the foveal region (using the Y6B layer activity), attempts 
to keep the fovea centered on the acquired moving target.  An optokinetic reflex, which responds to 
full field motion, stabilizes the eye when the robot body is in motion. Reorientation of the robot to 
trail an acquired target is accomplished by basing commands to the robot drive motors on the 
camera pan angle, requiring the robot to drive in the direction of the gaze.  This process is 
analogous to the targeting motion of the eyes, head and body in biological systems. Trailing is 
accomplished by triggering forward thrust of the robot when the predominant motion of a centered 
target is toward the center of the visual field (contracting motion field).  Collision is avoided by 
decreasing forward thrust when the target motion is away from the center (expanding).  Obstacle 
avoidance is achieved by decreasing thrust on the side of the robot opposite to the peripheral motion 
away from the center of the visual field. The obstacle avoidance reflex, which is transitory, assumes 



precedence over the pursuit reflex, allowing the robot to skirt around obstacles in pursuit of a target. 
The target motion can then drive the robot forward, but to the robot, forward is temporarily away 
from nearby obstacles. The camera windowing and pan and tilt mechanisms meanwhile continue to 
attempt to maintain central fixation on the target. For a discussion of the biological visual processes 
from which we derived our algorithms, see Blackburn and Nguyen (1994). 
 
We used a Transitions Research Corporation (TRC) Labmate Mobile Robot Base. A single CCD 
video camera with a 90 degree field of view, mounted on a pan and tilt mechanism built in-house, 
provided monocular input to the vision processing hardware.  Camera position was taken from shaft 
encoders located on the pan and tilt axles.   Wheel motion information was obtained  from encoders 
located  on both left and right drive motor axles.  Vision processing hardware included an Imaging 
Technologies OFG Frame Grabber coupled to a Hyperspeed Technology coprocessor board with 
two i860 microprocessors.   The vision processing hardware cards were hosted on an  80486 PC 
computer located in the robot housing.  The PC provided I/O to the Labmate  and pan and tilt 
controllers.   The Hyperspeed board received video data directly from the OFG board at frame rate 
over an ITI vision bus.  One i860 processor was dedicated to  subsampling the input frame and 
making decisions about the required motor responses, while the other i860 processor integrated the 
visual input into receptive fields  and performed motion analysis.  Pan, tilt and drive motor 
commands were sent to the  80486 for integration and execution. Actual processing rate with the 
algorithms described herein was approximately 8 frames per second. Frame rates of 20 frames per 
second could be achieved if all outputs used for process monitoring were disabled.  
 
Testing was  performed in a large partitioned room with an open work area of 32 by 18 feet.  Three 
walls of this work area contained windows, doors and office furniture.  An example of target 
acquisition and pursuit is shown in the photograph of Figure 2.  From a resting  position the robot 
turned and moved forward in pursuit of a human walking into its visual  space. Using only motion 
information the robot was able to detect  targets while either stationary or in transit. While in 
transit, the segmented motion provided information on the target’s behavior adequate to maintain 
tracking and trailing. Because the system segments and attends to the dominant unique motion, 
target maintenance can fail whenever the target motion does not differ significantly from the 
background. Because we have not yet implemented motion parallax based depth perception, the 
motion sheer due to the induced motion of objects residing at depths which differ from the target 
and its background is probably a major source of confounding unique motion. In addition, common 
motion at computational boundaries, where both surround inhibition and directionally specific 
inhibition can be weak, is particularly difficult to eliminate. 

 
Summary and Conclusions 

 
A preliminary form of motion segmentation is described that allows a visual motion based mobile 
robot to acquire, track and trail moving targets in a visually complex environment. The motion 
segmentation algorithms produced to accomplish this behavior use temporal and spatial 
comparisons of local optic flow to highlight likely locations of unique motion.   
 
This project demonstrates the utility of elementary biological models of visual motion processing in 
the autonomous control of a mobile robot. The machines that we hope to produce may be most 
efficiently made by following biological precedent. Natural mechanisms have been successful at all 
levels of complexity, and they achieved additional complexity and capability by maintaining and 
modulating more elementary functions. Since nature began with the production of very simple 
organisms, living successfully within protected ecologies, so might we begin in our design of 
artificial intelligence machines with very simple functions appropriate for a particular environment. 
When we become good at this, then like nature, we can expand our requirements and the 
complexity of the machines to meet them. If we are competent observers and modelers, it should 



not take a billion years to reproduce human capability in a machine. The blueprint stands before and 
within each of us. Furthermore, once we have achieved that level of performance, we would be  
well positioned to produce a better intelligence than any of which we as individuals posses. 
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