JOINT TACTICAL
NETWORKING CENTER

Don Stephens
Standards Manager

Statement A - Approved for public release; distribution is unlimited (3 October 2012)

OVERVIEW

Software Communications Architecture Specification

e SCA4 presents the first major revision in over 10
years since the first iteration of the Software SR So00sCs
Communications Architecture (SCA) building upon November 17, 2001
a decade of expertise

— Incorporates numerous technological advancements and
lessons learned in the field of software defined radio (SDR) SOFTWARE COMMUNICATIONS ARCHITECTURE
since the release of SCA 2.2.2 '

— Prior to the release of SCA4 the framework remained brepared fo the
relatively static outside of an extension to include a small Joiat Tactical Radio System (FIRS) Join
subset of the new features.

Prepared by the

e SCA4 significantly optimizes the framework and o ater Contra . DAAB15-0
improves a programmer’s ability to develop SDRs
efficiently.
e SCA4is applicable to a breadth of potential target e tn

platforms and applications beyond tactical SDRs.

Prepared by:

JIRS Standards
Joint Program Executive Office (JPEO) for the Joint Tactical Radio System (JTRS)
33000 Nixie Way
SanDiego, CA 921475110

The new innovative features of SCA4 strengthen its relevance in today’s market of
resource constrained systems.

Statement A - Approved for public release; distribution is unlimited (3 October 2012)

INTRODUCTION

e The SCA is an open-architecture specification that defines) .
the interactions between software applications (e.g. Architecture of SCA-Enabled Radio

waveforms) and hardware platforms (e.g. radios). =
— The SCA has guided the development and evolution of the SDR \‘\
domain. Waveform 0101101
— SCA concepts have been used within multiple industries, products
and countries beyond the US DoD community.
e The SCA establishes an infrastructure to minimize the M:;,o et m""‘;&fg &"Zd,'t‘:j‘“ ot
amount of effort required to port waveform applications. Ro's's '
. . . | SR ed - — '
e SCA-based SDRs provide a standardized infrastructure for ' ﬁ ot &

. . . . OS APIs G5 APIs OS5 APIs | | SCA/AEP
software deployment and configuration; while ensuring s e _ |
interoperability between SCA-based products. Mddevare Networking ~ PosixOS Keme

— SCA components may be extended by the JTRS Application Program D | | 8
Interfaces (APIs) to provide platform specific capabilities.
— The SCA and JTRS APIs promote waveform portability and reuse by
isolating the waveform application from the radio set.
SCA4 emphasizes flexibility and scalability throughout the specification.
— System developers can use the flexibility to innovate and provide solutions tailored to a particular product.
— Radio users may leverage the flexibility to customize and extend the features and capabilities of the original product.
The modular nature of SCA4 allows for the evolution of the standard as technology
and requirements change.
3

Statement A - Approved for public release; distribution is unlimited (3 October 2012)

“‘ﬂ'ﬁE"T OF OEFQ
s,
2

S

Information/Assurance

Security Enhancements

SCA4 embraces the ‘push’ model

SCA4 Expands “Least Privilege’

Design Pattern * This has security concerns because

unauthorized objects can make

cinterface» requests for the information
DomainManager
> Domain
+ applicationFactories :ApplicationFactorySequence SCA 2 2 2 WaLform 2: Information only on Request ETERED
+ applications :ApplicationSequence e Component < %
+ deviceManagers :DeviceManagerSequence .
+ domainManagerProfile :string 1: Request for Data
+ fileMgr :FileManager
+ identifier :string 1: Always Sends Information
>
+ registerDevice(Device, DeviceManager) :void SCA4 Waveform Domain
+ registerService(Object, DeviceManager, string) :void Component Manager
+ unregisterDevice(Device) :void
+ unregisterService(Object, string) :void . . .
+ registerDeviceManager(DeviceManager) :void * Information is sent dIFECt|y to the
+ unregisterDeviceManager(DeviceManager) :void H H H
ey e Domain Manager without having to
+ uninstallApplication(string) :void . . authenticate the request_
+ registerwithEventChannel(Object, string, string) :void
+ unregisterFromEventChannel(string, string) :void

SCA Next deletes the Naming Service

* Interface decomposition permits
designers to eliminate external .

The original SCA maintained lists that could be queried
interface visibility

(or exploited) by other software components.

. Dgcc-)mposition / Optional inheritance » SCA Next does not publish these lists which could be
eliminate need for “dead code” inappropriately used.

SCA4 Enables High Performance, Cost Effective, Secure Wireless Products

Statement A - Approved for public release; distribution is unlimited (3 October 2012)

MIGRATING TO A PUsSH MODEL

4"?704'_ NETW'E‘“‘/\“O SCAZ.X
* The SCA was originally developed with a client- [LsetRegisteredDevices | (resave]
side ‘pull’ design pattern which required a multi- |, Pomaintianager AppFactory %
step approach to deploy components in the }//'
domain. (g NamingService
— In SCA 2.2.2 application components register with Bl

then the ApplicationFactory queries the naming N

service to d|§cover when application components e
became available. :

— Only after the components have registered can the
ApplicationFactory continue the deployment
process.

the naming service upon entry to the domain and \\
A
- u \lpComponem

e SCA4 maintains knowledge of system SCA4
components within the domain and replaces the
registration process with a ‘push” model DomainManager P —
approach. [,egis.eromManager]

— An application component is provided access to an Seo
instantiation of the standalone ComponentRegistry .
interface that is associated with an
ApplicationFactoryComponent. DeviceManager

— The application component registers with the
registerComponent] -~

Does not allow access to
vulnerable system data

{ registerComponent]

ComponentRegistry instantiation and provides all SEEE R

of its information upfront with a single call.
— No longer uses a vulnerable naming service. Reduces boot-up time J Device

Eliminates the possibility of
clients requesting information
they should not hav%.

potentially 50% decrease.

Statement A - Approved for public release; distribution is unlimited (3 October 2012)

“‘ﬂ'ﬁE“T OF

S

hTNg

Dgp,
W
s,
<

SCA PORT CONNECTIONS

SCA “uses” port is a reference to the
object that implements the interface of
/ the SCA “provides” port.
1

e The SCA’s component architecture identifies

connection points (i.e. ports) between application K
software components.
— Associated with a port is an interface, either an Software 4| { Software
individual interface or aggregation of interfaces Component H _{ Component
— Interface information is provided in the XML files for A ! B

every component in the system

The specific system architecture determines whether
the information is publicly accessible or whether
communicating components must know the interface a
priori.

* SCA4 introduces a new static ports feature.

Static ports allow for an implementation specific

SCA “provides” port is an object that
implements an associated interface.

SCA connects components via ports

approach to connection establishment.
. . - SCA port iated with ifi e
— Connections can be formed in an efficient manner at LA ports are assoﬁ'a edwitha speaific "3, Software
. o e . interface, Vocoder::Ctrlinterface in this 1 ' Component
run time or at build time by providing a static example. % %
predefined address for the connection. gl
«interface» ’,r’
* The impact of static ports is minimal for applications Ctrl
with a limited number of ports, but the capability will + getLoopback) :boolean
| . b . “ . f . h + setLoopback(loopback:b...
result in substantially more savings for systems wit + getAlgorithmsSupported(l
i H i + getTxAlgorithm() :Algori...
applications that require hundreds of port L Rdloorthmo A SCA ports have an
connections. + setTxAlgorithm(txAlgorit... 5 .
+ swragoinmeaiont. | asSociated interface
+ abortTx() :void

(from VVocoder)

Statement A - Approved for public release; distribution is unlimited (3 October 2012)

6

OPTIONAL INHERITANCE

e JTRS SCA-based products support a vast range of functionality and features.

* SCA 2.2.2 defines a “one size fits all” infrastructure which has been successfully implemented and
deployed in SDRs today.

e SCA4 augments the current capabilities by providing infrastructures with the ability to be reconfigured

such that they better align with system requirements.
— SCA4 can lower the cost of SDRs with the new optional inheritance technology, which reduces software development
and maintenance effort and costs.

SCA2.x SCA4

properySe!

The developer was required to implement all of an
interface’s inherited interfaces even though they all
may not have been necessary. o

CF::TesrableOb}ect

«interface» «interface»
LifeCycle PropertySet
+ initialize() :void + configure(Properties) :void
+ releaseObject() :void + query(Properties*) :void
«interface» «interface» C<'<:i‘rl1lft.afrface>l>
TestableObject PortSupplier :LifeCycle
+ runTest(unsigned long, Properties*) :void + getPort(string) :Object + initialize() :void "
(unsig 4 i) g (string) ! + releaseObject() :void —
v\ «interface»
Resou pa— /[The developer only needs to
v e el interface include the interfaces necessary
+ sart() id + connectPort(Object, string) :void - Resolice f f . I .
art() :voi s B
+ stop() :void + disconnectPort(string) :void or a specific implementation

7

Statement A - Approved for public release; distribution is unlimited (3 October 2012)

- OPTIONAL INHERITANCE (CONT.)

e Optional inheritance is implemented in SCA4 via directives in the Interface Definition Language (IDL)
definitions.
— Each directive is associated with a Unit of Functionality (UOF), which contains a grouping of requirements that provide
a particular set of functionality.
* Example: Tailoring the DeviceManager interface’s inheritance
— Optional inheritance reduces the number of applicable requirements;
— The savings associated with this feature are distributed across the entire software development life cycle.

Devi ceManager . idl Connectable UOF is enabled which
results in the DeviceManager interface
#define CONNECTAELE extending the PortAccessor interface.
«interface» «interface»
module CF { PropertySet DeviceManagerAttributes
«interface» configure() deviceConfigurationProfile
interface DeviceManager : Componentldentifier PortAccessor e g() fileSys
#1f defined (CONNECTZBLE) it registeredComponents «interface»
,PortAccessor connectUsesPorts() ManagerRelease
#endif disconnectPorts()
#1f defined (CONFIGURABLE) getProvidesPorts() CORRGR AR shutdown()
, PropertySet ’ INTERROGABLE
#endif
#1f defined (MANAGEMENT RELEASABLE) «Interfaces -
R MarllagerRelease Componentidentifier CONNECTABLE MANAGEMENT RELEASABLE
#endif identifier
#1f defined (INTEREOGABLE)
, DeviceManagerAttributes cier The other UOFs are not enabled and
Bandd DeviceM therefore the DeviceManager interface
| el would not extend any of the other
i, optional interfaces (grayed-out).
}i 8

Statement A - Approved for public release; distribution is unlimited (3 October 2012)

INTERFACE DECOMPOSITION

e SCA4 introduces new interfaces that assume a portion of the functionality of the SCA 2.2.2. interfaces.

e The decomposition increases interface cohesion and provides a standardized method for product developers
to implement engineering decisions regarding component capabilities.

Example: DomainManager interface changes between SCA 2.2.2 and SCA4.

— The majority of the operations and attributes maintain a one-to-one mapping between the versions, specifically items 1-3
and 6-7.

— The interface change introduces a least privilege pattern at the framework level, e.g. registration operations were moved
into new standalone interfaces, indicated by items 4 and 5

«interface» «interface» «interface»
S CA2 . X PropertySet S C A4 EventChannelRegistry Domainlinstallation
registerWithEventChannel() installApplication()
O «[:3:?3&90 O { unregisterFromEventChannel() uninstallApplication() } O

? «interface» R ﬁ «interface»
PropertySet \ Iﬁ I)/ |ﬁ Componentldentifier
EVENT CHANNEL APPLICATION INSTALLABLE
«interface» configure() identifier ¥ O
DomainManager O { query() \ /
[| domainManagerProfile /
deviceManagers CONFIGURAB «interface» «interface»

- | applications DomainManager ManagerRegistry

applicationFactories : el
fileMgr dintorfaces domainManagerProfile g g

managers

| identr ComponentRegis!

< | identifier p gistry O o e

) - - registerCompor et applicationFactories N
registerDevice() & L 0 fileMgr

«interface»

| | registerService() !
unregisterDevice() @ 4& FullManagerRegistry

L | unregisterService() o unregisterManager()]

registerDeviceManager()

FullComponentRegistry| K_E'y_

{ unregisterDeviceManager() . .
{ installApplication() unregisterComponant() O - No impact change in SCA4

uninstallApplication() .

registerWithEventChannel() @ - Refactored in SCA4 to

unregisterFromEventChannel() support least privileged
Statement A - Approved for public release; distribution is unlimited (3 October 2012)

SCA4 introduces a component model that

benefits specification users primarily from a
system engineering perspective.

No longer only provides an “interface centric”
system view.

The component model provides a clear
separation between:

* Interfaces - an element that defines
“what” needs to be done or “why”
something needs to be done.

e Components - a modular, replaceable part
of a system within a defined environment
that encompasses both static and dynamic
behaviors or “how” something is done.

The component model does not introduce
significant changes to the existing requirements

set.

Many of the requirements in previous versions of
the SCA were behavior based requirements, i.e.

requirements that went beyond the interface
level.

Behavioral requirements now appear in a
corresponding SCA4 component definition.

Adds usability to the SCA without incurring great
cost for the developers.

_ o exception when the device's operationalState is DISABLED.
Statement A - Approved for public release; distribution is unlimited (3 October 2012)

SCA2.x

«interfface» = [_--—-"= ~
Device \

+ 4+ + + + +

usageState :UsageType
adminState :AdminType
operationalState :OperationalType
softwareProfile :string

label :string

compositeDevice :AggregateDevice

+

allocateCapacity(Properties) :boolean
+ deallocateCapacity(Properties) :void

Requirement
Text | exception, when the Device’s adminState is not UNLOCKED

SCA4

Requirement The allocateCapacity operation shall raise the InvalidState
Text | exception when the device's adminState is not UNLOCKED.

The allocateCapacity operation shall raise the InvalidState

or operationalState is DISABLED.

«interface»
CF::CapacityManagement

+ usageState :UsageType

+ allocateCapacity(Properties) :boolean
+ deallocateCapacity(Properties) :void

|
ALLOCATABLE
|

Behavioral requirements
______ moved sections but no
E significant change to text

ComponentBaseDevice

The allocateCapacity operation shall raise the InvalidState

Realizes h
ComponentBase | ~
7 ~
4 N
g N
. N
. N

ApplicationFactory . Compon

entFactoryComponent|

’
,
,

LN

_| not-shown

Realized interfaces

Realizes
ComponentFactory|
Component

C ComponentManagerComponent

ComponentManager

Application

ApplicationComponentFactoryComponent

PlatformComponentFactoryComponent

PlatformComponent

D

pd

ComponentBaseDevice]

[

CapacityManagement

I

DeviceAttributes

ApplicationComponent; ResourceComponent ServiceComponent
Resource
T
A /\7 ! = 7
B
'
i
8] '
’ .
ApplicationResourceComponen K CF_ServiceComponent
.
'
A Realizes
ComponentBase

IAssemblyControllerComponen

I

ManageableComponent

I

ParentDevice

7

DeviceComponent

I

ComponentBase

Device

Realizes

ComponentBase

FileSystem

FileSystemComponent|

File

FileComponent

ControllableComponent

Componentldentifier

FileManagerComponent

FileManager

I

ControllableConmponent

Key:
[] - Abstract Component [] - Non-CF Service Component
[] - Base Application Component [] - Base Device Component
[- CF Service Component [- Framework Control Component
D - Common Base Component

I

LifeCycle

I

PortAccessor

I

PropertySet

I

TestableObject

LoadableDeviceComponent|

LoadableDevice

ExecutableDeviceComponent

ExecutableDevice

AggregateDevice

AggregateDeviceComponent

11

Statement A - Approved for public release; distribution is unlimited (3 October 2012)

EXPANDED FEATURES:

APPLICATION CONNECTIVITY

e SCA4 introduces an intra-application connection mechanism that allows the framework to

connect multiple applications.
— Ideal for handling communication to external apps seamlessly via the Android presentation layer.
— Facilitates rapid integration and expansion of application capabilities

~ \

W

Waveform

0101101

w1

4
S p——
)

.

Permits SCA-based SDRs and applications to support the

deployment and interconnection of tactical mobile apps,

- such as those found in the U.S. Army’s Marketplace, an
Android-based app store.

ort Connection
the approach in

this proposal to do this

Deploy 0..nB’s
Number of B's created
could vary in this Use Case

]

Radio Set Operating Environment (OE) | Radio Set SCA Core RN
Audio_‘1 Modem Ethernet | | Control Framework Ssa o
Lo - . . .
{ 000 J
: External P
: . == SaDE Would use
OS APIs OS APIs OS APIs | | SCA/AEP Deploys B o2
RealTime Ope o Connects B —» A]
-Time rating Environment
Middleware ing Posix 05 Kernel 2aRA
Deploys A
o000
B
A :I:: : 0.n « "~ - [
®
—] B

Statement A - Approved for public release; distribution is unlimited (3 October 2012)

12

EXPANDED FEATURES:

CORBA OR NO CORBA?

 SCA4 no longer dictates the use of a specific middleware technology, namely the
Common Object Request Broker Architecture (CORBA).

— CORBA is still a viable alternative for SCA platforms and applications, but SCA4 provides mechanisms to extend the specification
with additional transfer mechanisms such as C++, RPC.

CORBA is no longer
mandated — but some kind o
transfer mechanism is still
needed

Platform Device Service
Component Component

~ ! Transfer Mechanism % Transfer Mechanism
AEP AEP-

- - B

- -
- - o
= =

- -
—— ______——

____.———_

f Legend

ApplicationResourceComponent

System Component...........cccceviierrnrernssenens
Core Framework
Control Components (CFCC)............ccuuunenens

Transfer Mechanism..........cc.cocviniiinniiennnnn
@A Application Environment Profile (AEP)... -/

13

Statement A - Approved for public release; distribution is unlimited (3 October 2012)

COMPLIANCE TESTING

The JTRS Test & Evaluation Laboratory (JTEL) performs
compliance testing for the SCA.

— JTEL uses a combination of manual processes and an automated
tool, the JTRS Test Application (JTAP).

Steps were taken during SCA4 development to shorten the

development life cycle by increasing the percentage of /

automated tests.

— A working group with JTEL representation performed a detailed
assessment of the manually validated SCA 2.2.2 requirements.

— Once the test method was confirmed the requirement was analyzed
to ensure that it was a relevant and necessary at the SCA level.

— If the requirement was deemed non-essential then the text was
either removed or refactored to provide development guidance.

— If considered necessary, the requirement was evaluated to
determine if it could be reworded to preserve the original intent but
made testable.

— As either existing requirements were modified or new requirements
inserted within SCA4, the team reviewed each change to ensure
that it could be tested.

Statement A - Approved for public release; distribution is unlimited (3 October 2012)

JIRS
Test € Evaluation
Laboeratory

%" = Y
ot N
A

!
o
»

/ -
...sc.a}@mum \

Remove or
demote to
guidance

CONCLUSION

 Theintent of SCA4 is to enhance the framework’s ability to support radio
specific development and maintenance while mitigating impact to
existing platforms.

e SCA4 takes the next step in streamlining the development and
maintenance of SDRs all while promoting flexibility and security as
ingrained features.

* This newest standard, officially versioned as SCA 4.0, was approved by
the JTRS Interface Control Working Group (ICWG) and the Wireless
Innovation Forum (WINNF) on February 28, 2012.

e JTNC s in the process of submitting SCA4 for inclusion into the DoD
Information Technology Standards and Profile Registry (DISR)

15

Statement A - Approved for public release; distribution is unlimited (3 October 2012)

