SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

SOFTWARE COMMUNICATIONS ARCHITECTURE
SPECIFICATION

USER'S GUIDE

30 November 2015
Version: 4.1<DRAFT>

Prepared by:

Joint Tactical Networking Center
33000 Nixie Way
San Diego, CA 92147-5110

Statement A - Approved for public release; distribution is unlimited (30 NOV 15)

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015
REVISION SUMMARY
Version Revision
0.3 Initial Release
1.0 SCA 4.0 Release
4 1<DRAFT> Terminology updated and sections added to correspond to SCA 4.1 Release.
) Version number updated to correspond with SCA release.

ii
Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

TABLE OF CONTENTS
1 SCOPEuueeiticnisinseensnisnsssnsssissssssssssisss 8
1.1 Informative Referencesccccocevirreesuecsenssnnsuncsnissensencssnsncssessssssesssecsssssscssesssesssssssssssssssssesssess 8
2 SCA INTRODUCTION ...couieveisrecsuissessnsssnssssssessas 9
2.1 Separation of Waveform and Operating Environment..........ccccccceveeeessanccssnncssnscssanscssanscssane 9
2.2 Operating ENVIrONIMENLcccoveiensnicssnccssancsssanssssasssssssessssssssasssssassnss 9
2.2.1 Application Environment Profilesccoooiiiiiiiiiiiiiiiiiicecceceeeee e 9
2.2.2 Middleware and Data Transfercocoivieiiiiiiiiiiieeeee e 10
2.3 JTNC Application Program INterfaces......cccccersercsssercssnicssanecssasesssasesssascssssscssssssssssssssasssses 10
3 TOPIC ORIENTED GUIDANCE AND SUPPLEMENTARY INFORMATION............. 12
3.1 SCA FeatUIeS...uccesecsecseecsansncssesssnssnsssecsssssncssessssssessssssssssssssesssssssssssssssssssssessssssssssasssssssssssssess 12
311 PUSH MOGCL...ciiiiiiiieeee ettt ettt ettt et b et et naeens 12
3111 OVEIVIEW .ttt ettt et ettt e san e e te e st e e e nanes 12
3.1.1.2 External framework management............ccueeerireeriirerniieeniieenieeesieeesneeesneeesaneeeeneens 13
3.1.1.3 Registered and obtainable provides POItScceeerueerriieriieeniieenieeniee et 14
3.1.2 Enhanced Application CONNECHIVILYcccovieeriieeriieeeiiieeeiiieeeiireesieeesaeeesseeessseeensseeesreesnnnes 16
3.1.2.1 0 BacK@round.......cooiiiiiiiiiiiee et et 16
3.1.3 INeSted aPPIICALIONSuvveieiiieeiiieeeiieeeiee et e et e eiteeetaeeetaeeetaeessseeesssaeenssaeensseeesseeansseeennnes 17
3.1.3.1 Use cases for nested appliCatioNS..........cevueeeriieeriieeriie ittt 17
3.1.3.2 How nested applications WOork in SCAcccuviriiiiiiiieeieeeiie e 18
3.1.4 Application INTErCONMNECTIONcciuuieriiriiiiiiiiiieerite ettt ettt e st e st e e st e e st e e sabeeeaeees 20
T T B O)/ 4 1S ORI 20
3.1.4.2 Use case for interconnecting appliCationsc.eeevveeervieriieeriieeniieenieeeniee e 21
3.1.4.3 Application interconnection deSIZNc.eeerveeriuieeeiiireeiiieeriieeesieeesieeesreeesereeeeaeens 21
3.1.4.4 Application interconnection implementation............cceeereeernieeriieeniieeniieeniee e 21
3.1.4.5 ApplicationFactoryComponent support for interconnected applications................... 22
3.1.5 Enhanced allocation property SUPPOTTccccuueerueeerieeenieeeiteeesiteeeiteesiteesieeesareeesireesnaeeas 23
T 5 T B 0)/ 4 1S USRS 23
3.1.5.2 Descriptor structure for nested appliCationscoccueeerveeriieeriieeniieeniie e 23
3.1.5.3 SCA Enhanced Allocation PrOperti€s..........ccccuveervierniieeniiieeniieenieeesieeenveeeeveeeeneens 24
3.1.5.4 SCA Dependency HierarChi€sccueevvuieeriiiiniiiiiiieeiee ettt 25
3.1.6 Lightweight COMPONENLS.........ceeriiieiiiieeiiieeiee et e erteeeieeeeiteesaeeesaeeesseeeseseeensseesssseesnnns 28
B.1.0. 1 OVEIVIEW .ottt ettt ettt sttt e e s e beesaneeeneenanes 28
3.1.6.2 BENETILS .t et et 29
3.1.6.3 SCA SOIUHON .ottt ettt ettt sb et st sbe e e st e sae et 29
3.1.6.4 Implementation CONSIAETAIONSccvuieriiiriiiiiieniieeieeriee ettt 29
3.1.7 Component MOAELcoc.uiiiiiiiiiiieiiieeeeeee ettt sttt e 30
T B B 0)/ 4 1< ORI 30
3.1.7.2 Interfaces and COMPONENLS.......ccccuviiriiiiriieiiiieeriieeriee ettt ee et e et e et eesbeessareeens 31
3.1.7.3 Benefits and IMPlICAIONSeeeiuieiiiieeiiieeiee ettt eree e e e eeereeeneaee s 32
3.1.8 Units of Functionality and SCA Profilescccccceeriiiiniiiiiiieiiieieeeeeeeee e 34
iii

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

3181 OVEIVIEW .ottt ettt ettt e st ettt sane et e e e eane 34
3.1.8.2 SCA UOFS and Profiles.......cc.coiiiiiiiiiiiiiiiieeeteeee et 34
3.1.8.3 Use of UOFs and Profilesccocuiiniiriiiiiiniiiiicniceecieeecneceese e 35
3.1.9 Late REISIIAtIONcueiiiiiiiiiiiieiie ettt sttt ettt e st e e eaees 36
3.1.9.1 Application ReIStratiOncueeiiuiiiiiiiiniieeiiie ettt 37
3.1.9.2 PlatformComponent RegiStrationcoccueeiuiiriiriiiiniiiiienieeeese et 37
3.1.9.3 Late REeZISTIAIONccoiuiiiiiiieiiiieeiteeeite ettt ettt st e st e e st e e st e e sabeessareeens 38
3.1.10 Enhanced Process Collocation SUPPOTItc..eeeriieeiiieriiieeeiieeeiee e erieeesveeesiveeeeree e 39
3.1.10.1 BaCKZIroUNd......ooiiiiiiiiiieiiee ettt ettt ettt e e 39
3.1.10.2 Earlier SCA Capabilities.........ccceeruieeriieeiiieeiieeeiieeeiteesieeeseeeesreeesereeesseeeaseeennneens 40
3.1.10.3 Enhanced SCA Capabilities.........cc.eerruiiiriiiiiiieiiiieeiieeeeeeeeeeete ettt 40
3.1.11 Self-Launching COMPONENLSeeervieiriieeiiieeiieeerieeeesieeeeieeesseeesseeesseeessseesssseessssessnnes 40
3.2 DeSiZN GUIAANCE ..cuveierrrnicssnicssanicsssnisssasesssasesssasesssssesssssessasssssasssssasssssasssssassssssssssssssssssssssassssss 41
3.2.1 CORBA PIOFIIES ..ottt et st e s 41
3.2.1.1 Guidance on the USe Of ANY......ccccuiiiiiiiiiiiiiiiieeiieete ettt 41
3.2.1.2 Guidance on the availability of commercial ORBs implementing these profiles...... 41
3.2.1.3 Use Case for the Lightweight profile..........cccccooviiiiiiiiiiiiiiee e, 41
3.2.1.4 Guidance on restriction interface data tyPes........ccceevveerieieniieeeniiieenieeerieeeveeeinens 43
3.2.1.5 Rationale for CORBA feature inclusion in the profiles...........cccccceeviiiiniiiiniininnenn. 43
3.2.2 SCA Waveform CONSTIUCTIONeeuieriiiiiieniieeteesite et site et eestte et e sateebeesateebeesateebeesseeenees 44
32201 OVEIVIEW .ttt ettt ettt ettt et st e sae e et ae e et e saneeaneenaeeeane 44
3.2.2.2 FMB3TR waveform eXample..........cccoeriiieiiieeiieeeiieeeiie et esieeeereeesveeeseveeeeveeeeaee s 44
3.2.3 Static DEPIOYMENL. ..c..uiiiiiiiiiiieiitie ettt ettt et e sttt e e e e 46
TR0 T B O)/ 4 1< USRS 46
3.2.3.2 Deployment Backgroundcccooviiiiiiiiiiiiiiiiiieeeeeeeee e 46
3.2.3.3 Connection ManagemeNtcccueeeruieenieeenieeenireesieeessseeessseeesseessseesssseessssessssseens 47
3.2.3.4 EXAMPIE cooiiiiiiiieeeee ettt st e st e s 48
3.2.4 Application PIM Profiles Conformance Benefits...........ccceevvieriiiieniiieiniiieeiieeiee e, 48
3.2.4.1 Application ConformancCe............ccueeruieiriiieiniiieeniie ettt sttt 48
3.2.4.2 Engineering Tool CONfOrMANCe...........ccevueiriiiiiiiiiiiiiieieeieesteeee et 49
3.2.5 IDL PSM CONSITAINTS.eeoutiriieiieeiieniieeteestee et et ste et e st esteesite et e saneesbeesaneesneesaeeeneenanes 49
3.2.6 Organization SPecific SCA TaillOTiNg........ccevvieeriiieiiieeie ettt e ree e 49
3.2.6.1 Organization Specific INterfaces...........coociiiriiiiiiiiiiiiiiiiieeeeee e 50
3.2.6.2 Organization Specific COMPONENLSccccureerieerririeriieeeireeeieeenreeesreeesereeesereeesneens 51
3.2.6.3 Organization Specific Components - AIErNatiVescceevvveerriieeniieeniiieenieeenieenns 52
3.2.6.4 SUIMIMATIY c..uvvieiiieeeiieeeiieesieeeeieeeeteeesateeetbeeesteesnsseesssseesssaeessseeensseesnsseesnsseesnssessnsseens 53
3.2.7 Sample Waveform Architecture and Considerations..............coevveervieeniiieeniieeenieeenieeennnen 54
3.3 SCA MOIfICALIONS cccuueeerurisseiesnissanisnnsssnssssicssnsssnsssnsssssssssssssssssnsssssssssssssssssssssssssssssssssssssssassss 58
3.3.1 Resource and Device Interface Refactoringccccceeevviiiiiiiiiiiiiiieiiieieee e, 58
T8 20 B B O)/ 4 1< USRS 58
3.3.1.2 Resource Related MOdifICAtIONSc.eeriieiiiriiiiieniieieeie et 58
3.3.1.3 Device Related ModifiCationscccueerueiriiiiiiiiiieiiinieeieeseeeee et 60
3.3, 1.4 SUIMIMATY c.oeeiiiiiieiiiee ettt ettt e st e e st e e e bt e e sbbeesbbeesabbeesabeeesabeessabeesnnseenas 63
3.3.2 Refactored CF Control and Registration Interfaces...........cccccueevvviieriiieeniiieeniieciee e 63
3.3.2.1 OVEIVIEW .ottt ettt ettt ettt st e sat e ettt st e st e eaneenaeeeane 63
3.3.2.2 DeviceManager Interface Changes...........ccccecueeeviiieriiiieniieeniieeeieeenveeerveeesvee e 63

v

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

3.3.2.3 DomainManager Interface ChANZESsc.ceeviiiiriiiiiiiiiiieeiceeeeseeee e 66
3.3.2.4 Application Interface Changes..........cccuveeiiieeiieeeiiieeie et eeieeeeteeesree e e eaveeeeaee s 67
3.3.2.5 ApplicationFactory Interface Changescccevvueeeriieiniieniieenieeseeesiee e 68
3.3.2.0 SUIMIMATY c.uuvvieeiiieeeiieeeiteeeteeeeieeerteeeateeetteeesaeesssaeesnsseesssaeasssaeenssaeenssaesnssessnssesensseens 68

3.4 Working in an SCA ENVIroNMENt........ccceiceiaiecssancssssscssssscssasssssasesssssesssassssssssssssssssssssssasssses 69
3.4.1 SCA 4.1 Development ReSponsibilities.ccueieriieeriieeiiieniieeeiie e eeree e 69
B4 1T OVEIVIEW .ottt ettt ettt et st e saee ettt et esaneeaneenaeeeane 69
3.4.1.2 Component Development ALIgNMENtc..ccoiuiiiiiiiiiiniiiiienieeieeeeeee e 69
3.4.1.3 Component ProAUCES...........eoiiiiiiiiiiiiieieiieeeiteeriee ettt ettt 70
3.4.2 SCA Maintanence Process — How To Develop a New PSM?.......ccccoevviiiiniiieinieecieeeee, 71
3421 OVEIVIEW .ttt ettt ettt ettt et et st e sat e et e st et esaneeaneenaeeeanee 71
3.4.2.2 SCA Change Proposal Process — Submitter Roles and Responsibilities................... 72
3.4.3 SCA Naming CONVENIONS.ueeiutieiiieeeiieeeiteestteestteesteeesiteeesieeesbteesbteesbeeesseessaseesnsseas 72
3.4.3.1 Component Naming CONVENIONS.eeeriieerieerrireeeiieenireesieeeesreeesseeessreeessseessseeens 73
3.4.3.2 Interface Naming CONVENTIONSccoouveiriieeriieeniieeniieeeiieeeieeeeiteesiee e st e esibeessareeens 73

3.5 SCA Q&EA eiiteittetectissistessessssisstsssssssstsssssssstssssssssssssssssstesssssssssssssssssssssssssssssassss 75
3.5.1 What elements of OMG IDL are allowed in the PIM?...........ccoociiiiiiiniiiiniiiieeeeee, 75

S T 0 B B O)/ 4 1S OSSR 75
3.5.1.2 PIM Background.........c.cooiiiiiiiiiiiiieiieeeteete ettt 75
3.5.1.3 PIM usage for SCA deVEIOPETScccouiieiiieeiiieeiiieeiie ettt eeiteesteeesaeeeereeeaveeeeaee s 75
3.5.1.4 Future PIM eVOIULIONccc.ciiiiiiiiiiiiiieicctcc ettt 75
3.5.2 What is the Impact of the SCA Port changes?.........cccveeviieeiiieniiieeiee e 76
3.5.2.1 OVEIVIEW .ottt ettt ettt ettt st e sae e ettt st e st e et e naneeane 76
3.5.2.2 POIt REVISIONS ..ottt st e 76
3.5.2.3 Interface and Implementation DIifferencesccoocveerviiiiiiiiniieiniiiiniceee e, 77
3.5.2.4 Implementation IMPlCAtIONScueeiiiiiiiiieeiiieeie et e e e e eeaee s 77
3.5.3 Rationale for DeviceManagerComponent RegiStration.............cceevveeeriiieeniieeeniiieenieennnnen. 78
3.5.4 Rationale for Removal of Application Release Requirement..............cccceeerveeenieenrineennnen. 78
3.5.5 Removal of the UML to Language Mappingsccceeevueeerieeriieeniieeiiieeniieesieeesiee e 79
3.6 Future ENhancements........ceiiiiiniiisnissnicsnncssnisssecssnncssnssssnsssnsssssssssessssssssssssssssssssssssssssssssss 80
3.6.1 Component Life CyCle.......ooiiiiiiiiiiiiiiiee ettt 80
BL0. 1.1 OVEIVIBW .uutiiieiiiieeiie ettt eetee e etee et e ettt e et e e et e e etaeeestaeeassaeeanseeeassaesssaeensseeensseeansneens 80
3.6.1.2 BaseComponent State Model <Requesting Additional Input>ccccceeveuuee.. 80

4 ACRONYMS .tiiiiiisnensnisssissssisssissssissassss 81
v

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015
TABLE OF FIGURES

Figure 1 Example SCA Powered Radioc...cooiiiiiiiiiiiiiiiiieeeeeeeeeee e 9
Figure 2 JTR Set and Waveform INterfaces..........ceovviieriiiiiiiiiiiiiieteeeeeeeeee e 11
Figure 3 Pull model re@iStIationceeiiieiiiiieiiieeeiieecieeeeiee et e e e eeteeeaaeeeaaeeeaaeeeaeeesnseeesnneees 12
Figure 4 Push model TeZIStIAtIONuiiiiiiiiiiieiiieeriie ettt ettt st e st e st te e s eeeabee s 13
Figure 5 External framework managementccccveeruieeriieeniieenieeenieeesieeeiveeeeneesneeesveeeseneens 14
Figure 6 Registered port ManaemeNtc.c.eeeruieiriieeniieeriee et eitee et et ee st esite e st e e sabeeesanee s 15
Figure 7 Obtainable port ManagemMeNLt...........cc.eeeruieeeiieeeriiieerieeesieeesreeeseteeesareeessreeesneeeseeessseeesseens 15
FIigure 8 POt IHTECYCIESuuviiiiiiieieee ettt et s 16
Figure 9 Simple nested appliCAtiON........cccuiieiiieiiieeeiieecieeeeieeesieeerteeeteeeereeeeaeesaaeeeaaeesnseeesnneeas 17
Figure 10 Security domain divided appliCationcovuieeriieiniiiiiiieiiee ettt 18
Figure 11 Inter-application CONNECTIONSccuveeriureeriieeeriieenieeesteeerreeesseeessseeessreeesneessseeessseesssees 21
Figure 12 Connectivity SpPecific €XamPIecoovuiiiriiiiiiiiiiiieeieeeee et 22
Figure 13 Inter-application connections with external POItSccccvveerieeerieeerieeenieeeieeeieee e 23
Figure 14 Dependency HICTarChycooouiiiiiiiiiiiiiiiiieieee ettt 26
Figure 15 Dependency Hierarchy and Sub-AppliCationsccceeerveeerieeenieeenieeeieesieeesiee e 27
Figure 16 Allocation property Xamplescooueeiriieiriieiniieeiee ettt ettt et e e s 27
Figure 17 Component Optional COMPOSILION.eeeviieriiieeeiieeeieeerreeerieeesreeesereeesaneeeseeessseeesnneens 28
Figure 18 Component Optional COMPOSILION.eeirriiiriieeriiieirieeeitee ettt e et e eiteesieeesbeeesaaeees 29
Figure 19 Optional Composition Design APProaches..........cccueevueeeriieeniieeniieeieeeiee e evee e 30
Figure 20 SCA Component RelationShips........coocuviiiiiieiiiiiiiiieciieeeceeeeeeee e 31
Figure 21 SCA Profiles with OE Units of FUNCtONAItYc.ccoooueeiiiiieriieeiieeieeeeeeeee e 36
Figure 22 Application Component RegiStrationcoccueeeriieiiiiiiniiieeiiee ettt 37
Figure 23 Platform Component ReZiStration...........cccuvieriiieeiiieeiiieerieeerieeeiieeeveeeiaeesveeesveeesnee s 38
Figure 24 Lightweight Component in Lightweight profileccoccoiiiiiiiiiiniiiiniiice, 42
Figure 25 Component distributed across multiple processing elements..........c.cccceeeeeeeeeieencieeennnnn. 42
Figure 26 Distributed component with FPGA POrtionccoccveeeiiiiiiiieniiienieeeieeeieeeieeeeienn 43
Figure 27 Example FM3TR SCA Waveform Design..........ccccveriiiiriieeniieeieecieeeeeeeee e 45
Figure 28 Example Deployment of FIM3TRc.cooiiiiiiiiiiiiiiecee e 46
Figure 29 ApplicationFactory Role in Component Deployment.............cceeeveeerieeeiieeninieenieeenneenn 47
Figure 30 Device Component Definition..........ccocuuiiiiiiiiiiiiiiiiiiiecieeeee e 50
Figure 31 Definition of an Organization Specific Interfacecccccveevieeeniiieeniieerieeeieeeeeeeen 51
Figure 32 Use of an Organization Specific INterfacecocceevueiiiiiiiiiiiiiiiiiiceeeieeeeen 51
Figure 33 Base Component Definitionccceeiiiiiiiiieiiiieeiiie ettt 52
Figure 34 Model of an Organization Specific COMPONENL.........cc.eeevuiierriierrieeniieeniieeriieeeiee e 53
Figure 35 High Level APCO-25 ATChItECIUIE........ccvviieeiieeeiieeeiee ettt et 54
Figure 36 APCO-25 Platform COmMPONENLS.......ccc.eeiiiiiiiiieeiiieeiieeeitee ettt ettt 55
Figure 37 Resource Interface RefactOringcccviieiiieiiiiieiiiecciie et 58
Figure 38 Application Component Optional Interfaces...........ccoocueeeviiiiiiiiniiiiniiiinieeeieeeeeeen 59
Figure 39 ResourceFactory Interface Refactoringcccoeecvveeviieeriieeniieeiee e 60
Figure 40 Device Interface Inheritance Refactoring...........cooceeeviiiiiiiiiiiiiniiiiiiececeeeeeeeeen 61
Figure 41 Device Interface RefactOring.........cceeeviiiiiiiieiiiieiiie et 61
Figure 42 LoadableDevice Interface RefactOring............cceeevuiiiiiiiiiiieiiiieiiee et 62
Figure 43 ExecutableDevice Interface Refactoring.........cccceecuveeviieeiiieeniieeiiie e 62
Figure 44 DeviceManager Interface Refactoring — registration Operationsccecceeeeeveeerveeennnen. 64
6

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

Figure 45 DeviceManager Interface Refactoring — attributesccevvveeevieeniieeniieeniieeniieeeenn 65
Figure 46 DeviceManager Interface Refactoring — miscellaneous operations............ccccceeeevveennenn. 65
Figure 47 DomainManager Interface Refactoring — registration Operationsc...ccceeeveeerveeennnen. 66
Figure 48 DomainManager Interface Refactoring — manager registration operations..................... 67
Figure 49 DomainManager Interface Refactoring — installation operations.........c.cccceveveeerveeennneen. 67
Figure 50 ApplicationManager Interface Refactoring...........ccueevvveeriieeniieeiiiieciiecieeeeeeeee e 68
Figure 51 ApplicationFactory Interface Refactoring.............cccoovveiiiiiiiniiiniiieiieeeeeeieeeeeen 68
Figure 52 General Allocation of Components to Radio Developerscoceevienieinienienneennenn, 69
Figure 53 SCA Change Proposal PrOCESS.........eivuiiiiiiiiiiiieiieeite ettt 71
Figure 54 SCA COMPONECIILSccciuvieeiurieeitieeeitteesitteeeiteeesteeesteeessseeessseeessseesssseessssessssseesssseessseessssees 73
Figure 55 SCA INEITACESeooviiriiiiiieieeeeeee ettt sttt 74
Figure 56 Port Interface Refactoringcoecuiiiiiiiiiiiiiieiiie ettt e 76
Figure 57 Port Implementation DIfferencescccoocieriiriiiiiiiiiicicceceececeee e 77
Figure 58 Sequence Diagram depicting application release behavior...........cocccooceviiiiiniinncnnenn, 79
Figure 59 Component Life CYCLec..ooiiiiiiiiiiiiiieee ettt 81
7

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

1 SCOPE

This User’s Guide is intended to provide practical guidance and suggestions for developing
Software Communications Architecture (SCA) compliant products. It is not a substitute for the
SCA specification, but a companion document to provide implementation guidance and design
rationale which complement the formal specification. This document will expand in content and
detail as SCA user experiences accumulate.

1.1 INFORMATIVE REFERENCES

The following documents are referenced within this specification or used as reference or guidance
material in its development.

(1]
(2]

[3]
[4]
(5]
[6]
[7]
[8]
[9]

[10]

[11]

[12]

[13]
[14]

Software Communications Architecture Specification Appendix B: SCA Application
Environment Profiles, Version 4.1, 20 August 2015.

OMG Document formal/2012-11-12, Common Object Request Broker Architecture
(CORBA) Specification, Version 3.3 Part 1: CORBA Interfaces, Version 3.3, November
2012.

OMG Document formal/2008-11-06, Common Object Request Broker Architecture
(CORBA) for embedded Specification, Version 1.0, November 2008.

Software Communications Architecture Specification Appendix E-2 - Attachment 1: SCA
CORBA Profiles (from CORBA/e), Version 4.1, 20 August 2015.

Software Communications Architecture Specification Appendix D - Platform Specific
Model (PSM) - Domain Profile Descriptor Files, Version 4.1, 20 August 2015.

Software Communications Architecture Specification Appendix F - Units of Functionality
and Profiles, Version 4.1, 20 August 2015.

OMG Document formal/2002-04-01, UMLTM Profile for CORBATM Specification,
Version 1.0, April 2002.

Software Communications Architecture Specification Appendix E: Model Driven Support
Technologies, Version 4.1, 20 August 2015.

Donald R. Stephens, Cinly Magsombol, Chalena Jimenez, "Design patterns of the JTRS
infrastructure", MILCOM 2007 - IEEE Military Communications Conference, no. 1,
October 2007, pp. 835-839.

Cinly Magsombol, Chalena Jimenez, Donald R. Stephens, "Joint tactical radio system—
Application programming interfaces", MILCOM 2007 - IEEE Military Communications
Conference, no. 1, October 2007, pp. 855-861.

Donald R. Stephens, Rich Anderson, Chalena Jimenez, Lane Anderson, "Joint tactical radio
system—Waveform porting", MILCOM 2008 - IEEE Military Communications
Conference, vol. 27, no. 1, November 2008, pp. 2629-2635.

JTRS Waveform Portability Guidelines,
http://www.public.navy.mil/jtnc/sca/Pages/portabilityguidelines].aspx.

JTRS Open Source Information Repository, http://gforge.calit2.net/gf/project/jtrs _open_ir/.
Anthony Nwokafor, “Design and implementation of an encryption framework for APCO
P25 using an open source SDR platform in an OSSIE environment”, Master’s Thesis,
University of California San Diego, 2012.

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

2 SCAINTRODUCTION
2.1 SEPARATION OF WAVEFORM AND OPERATING ENVIRONMENT

A fundamental feature of the SCA is the separation of waveforms from the radio’s operating
environment. Waveform portability is enhanced by establishing a standardized host environment
for waveforms, regardless of other radio characteristics. An example diagram of an SCA-based
radio is illustrated within Figure 1. The waveform software is isolated from specific radio
hardware or implementations by standardized APIs.

Radio Set Operating Environment (OE) Radio Set
Audio Device Modem Device Ethernet Device| |Specific Control

= 1B P2 ||S
T D4

WM waverorm UM -

VWYY VWYY)

. SCA/AH:M SCAAP|5><

Operating Environment

Mddleware, . SCA Core Framework
mta/l\/bssagmg Posix Real-Time

Trans Operating System %

Figure 1 Example SCA Powered Radio

s

2.2 OPERATING ENVIRONMENT
2.2.1 Application Environment Profiles

To promote waveform portability among the many different choices of operating systems, the SCA
specifies the operating system (OS) functionality relative to IEEE POSIX® options and units of
functionality. The Application Environment Profiles (AEP) specification [1] identifies specific
operations such as pthread_create(), open(), etc., that are available for wuse by
ManageableApplicationComponents and must be provided by the radio platform. A platform may
implement or provide additional OS functions, but waveform access to those functions is
constrained to those defined in the AEP profiles. This prohibition ensures that any SCA compliant
radio can support the waveform’s OS calls.

The SCA AEP defines three profiles, the AEP, Lightweight (LWAEP) and Ultra-Lightweight
(ULWAEP) that may be used across a range of radio sets ranging from a small handheld to a
multichannel radio embedded within an aircraft. The LWAEP is a subset of the AEP and intended

® POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

for constrained processors such as Digital Signal Processors (DSP)s that typically do not support
more capable real-time operating systems. The ULWAEP is a subset of the LWAEP and intended
for very constrained, microkernel based systems.

Some waveforms may require networking functions such as socket or bind. If a radio platform is
going to host waveforms that utilize those operations, it must support the Networking Functionality
AEP as an extension to the primary AEP profile. Reference [4] provides additional information
related to networking.

2.2.2 Middleware and Data Transfer

In Figure 1, the radio platform provides middleware and data/messaging transport in addition to the
real-time operating system. Middleware is a generalized service which facilitates messaging
between software components which may or may not be hosted on separate processors. SCA 2.2.2
and its predecessors mandated CORBA as the middleware layer and delegated the choice of a
specific transport protocol to the radio set developer. Common data transfer protocols are TCP-IP
and shared memory. The former can introduce substantial latency and may have unfairly tarnished
CORBA'’s reputation within the radio community. Faster transports such as shared memory
generally yield latencies more acceptable to high-data rate waveforms.

SCA does not have a CORBA requirement and defines middleware independent APIs, although
they are still specified in interface definition language (IDL) [2]. Radio developers may continue
to use CORBA or select a different middleware such as the lightweight Remote Procedure Call
(RPC) used by the Android platform. If an alternate middleware is selected, then products that
were dependent on the prior mechanism would require recompilation, but the APIs should remain
the same for the most part, thus maximizing waveform portability.

2.3 JTNC APPLICATION PROGRAM INTERFACES

Figure 1 contains several independent APIs which separate the waveform from the radio set. The
primary emphasis of the JTNC API standardization efforts has been upon interfaces between the
waveform and radio set such as those illustrated in Figure 2. The internal interfaces and transport
mechanisms of the radio are defined as necessary by the radio provider. The underlying intent is to
provide portability or reuse of the waveform between radio platforms and not necessarily
portability of the radio operating environment software. For additional discussion on waveform
portability, see [11] and [12].

10

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015
Operator _la System
Control Control

HMI

Service
B

Modem u Modem

Hardware Device
Audio u Audio
Hardware Device

Set-Specific Standardized
Interfaces JTNC APlIs

i

ZAS
<z
Waveform Application

i

Figure 2 JTR Set and Waveform Interfaces

There has been a conscious effort to maintain a clear separation between the SCA and the JTNC
APIs which define services provided by the radio set to the waveform such as GPS, time, etc. The
distinction not only maintains the integrity of SCA framework and preserves its applicability across
a wide range of domains, but also allows the content of each family of specifications to evolve
according to its own timetable. A partial list of the JTNC APIs is provided in Table 1. The APIs
have been developed with software design patterns that encourage a scalable and extensible
infrastructure. See [9] and [10] for an introduction to the aggregation, least privilege, extension,
explicit enumeration, and deprecation design patterns used by the JTNC APIs.

Table 1 Partial List of JTNC APIs

Audio Port Device API Ethernet Device API
Frequency Reference Device API GPS Device API
Modem Hardware Abstraction Layer (MHAL) API Serial Port Device API
Timing Service API Vocoder Service API
MHAL On Chip Bus (MOCB) API Packet API

JTRS Platform Adapter (JPA) API

The JTRS Platform Adapter (JPA) is both an API and a design pattern for controlling the waveform
by the radio set (it is a particularly vexing problem, to define a portable command/control interface
for waveforms across multiple radio sets). This API uses the SCA PropertySet interface as a
container for waveform parameters controlled and manipulated by the radio set. It also supports
bidirectional communication, permitting the waveform to provide status to the radio set.

11

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

3 TOPIC ORIENTED GUIDANCE AND SUPPLEMENTARY
INFORMATION

3.1 SCA FEATURES
3.1.1 Push model

3.1.1.1 Overview

Earlier SCA versions were pull model oriented as shown in Figure 3. References are exchanged
between providers and consumers, but callbacks are required to retrieve information from the
provider component.
For example:

e getPort for pulling uses and provides ports

e Pulling attributes (e.g. devicelD, registeredDevices)

e Pulling Application Components from a Naming Service

[getRegisteredDevices]
DomainManager AppFactory [’resolve I

) X

\ 4 NamingService

DeviceManager

~
& 7
l getPort I
\
\
// | getPort l
| getDevicelD I hJme\,ic&/

\A))pComponent

Figure 3 Pull model registration

SCA now utilizes a push model, Figure 4, architectural approach that allows for a direct exchange
of information without callbacks. The primary benefits of this model are better information
assurance and performance. Better information assurance is achieved by limiting component to
manager access to pushes only and eliminating the need for a Naming Service. Performance is
enhanced as the total number of calls involved in the registration process is reduced. This can
decrease component startup and instantiation time. Push model registration also allows the call
back attributes and operations to become optional and when they are not used the amount of
required implementation can be reduced.
For example:
e Device ID and Provides Ports can be pushed with the data provided at component
registration time and don’t need to pulled later
e Registered components (complete with IDs and Provides Ports) can be pushed with
DeviceManagerComponent registration

12

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

o The DCD information can also be pushed instead of pulled by accessing a
DeviceManagerComponent attribute
e Direct registration of application components removes the need for a Naming Service

DomainManagerComponent

ApplicationFactoryComponent

[registerComponent]\

~
~

,{ registerComponent]
-

DeviceManagerComponent

-

[registerComponent]’

ManageableApplicationComponent

DeviceComponent

Figure 4 Push model registration

3.1.1.2 External framework management

External Framework Management was expanded slightly to accommodate a push model.
For example
e The installApplication return now provides a ComponentType data structure that contains
data elements which previously required separate pull calls.

However, external framework management predominately maintains the pull model support of
previous SCA versions.

The rationale for this approach is that it provides a good balance of performance, capability and
compatibility. It affords greater performance when utilizing the push model extension for external
management, but continues to support the existing use cases where pulls may still be needed. It
also allows for backward compatibility without violating the least privilege principle.

13

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

Bothipulland Pushimodel Pulls are maintained for
o 5 External CF Management

capabilities are provided for e

External CF Management ystem Lontro - 5

7
create
Tl -~ e
Application Factory | __ - P ROT:
ComponentType references are —fm—————

returned to the caller \\ \

e 4 ionFactoryComp

get applicationFactories [getname o J

Note: Push Model utilizedfor | | mm===="7"7

registration and “internal CF”

management

DeviceComponent Mar bleApplicationCi it
PP P

Figure 5 External framework management

3.1.1.3 Registered and obtainable provides ports

In order to implement a push model and allow continued support of prior use cases, the provides
port semantics had to be enriched. SCA currently provides two types of provides ports,
“Registered” and “Obtainable”. Sometime these are referred to using the terms “Static” and
“Dynamic” which are found in earlier SCA versions. To avoid confusion, Registered Provides
ports = Static Provides Ports. Obtainable Provides Ports = Dynamic Provides Ports.

3.1.1.3.1 Registered provides ports

Registered provides ports are provides ports which have a lifecycle tied to the lifecycle of the
component. Registered ports are registered with the framework during component registration and
the framework will not attempt to retrieve them when making connections. Registered ports are
not explicitly released by the framework except through the component’s releaseObject operation.
Thus, the getProvidesPorts and disconnectPorts operations typically are not called for registered
provides ports. For assurance reasons, there may be cases when a component may want to reject
calls for these ports explicitly (e.g. raise an UnknownPort or InvalidPort exception). There may
also be instances when a component may want to allow ports that are “registered” to still also be
“obtainable”. Meaning the ports can be retrieved from getProvidesPorts and then connections to
the ports can be disconnected through disconnectPorts. The exact details surrounding the
semantics of port connectivity are left unspecified to allow component developers to customize this
behavior to match the needs of the target platform.

However a framework that is built in accordance with the specified SCA requirements will not
retrieve registered provides ports through getProvidesPorts and will not disconnect them through
disconnectPorts.

14

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015
connectUsesPorts
, 7| Registered provides port is supplied to
’ clients through connectUsesPorts
[Registered Provides Port] s
4
e Core Framework f‘(7 El
Component tl o - |:| - o : Component
’ 2 O‘ -
7 ~ -

registerComponent =~ «~[. disconnectPorts

Registered provides port is Called on the uses side only for
registered with the component Registered provides ports

Figure 6 Registered port management

3.1.1.3.2 Obtainable provides ports

Registered provides ports are provides ports which are meant to have a lifecycle tied to the
lifecycle of a given connection. Obtainable provides ports are not registered with the component
and instead the framework will attempt to retrieve the ports through the getProvidesPorts operation
when they are needed to complete connections. Obtainable provides ports are explicitly released
by the Framework via the disconnectPorts operation when the connections to them are torn down.
With obtainable provides ports, by specifying connectionIDs on getProvidesPorts and calling
disconnectPorts, additional use cases and added functionality are supported that is not available
within prior SCA versions.

getProvidesPorts
Called since Obtainable provides ports are
not registered with the component

registerComponent
Obtainable provides ports are not

[connectUsesPorts]

~ /
registered with the component ™o] , ’
~ ! 4
RN I} Core Framework o s |:| —
=& o
O
Component | II | - I:I 9
s o 7
e o /
\ /
Obtainable provides port \ /7
A Vi

disconnectPorts
Called on both the uses and provides side
only for Obtainable provides ports

Figure 7 Obtainable port management

Whether or not obtainable provides ports have to be tied to the lifecycle of a given connection is
not specified. Several use cases exist where they may have a longer lifecycle:
* A “backward compatibility” use case where a provides port is created and released with the
component, but not registered, mimicking the prior SCA pull-model behavior
e A “fan in” use case where the same provides port instance services multiple connections,
with reference counting used to dictate when it is released.

15

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

Note: Registered provides port lifecycle matches that of the
component. This is restricted because a registered provides
port must be registered with the component and is not retrieved
through getProvidesPort or released through disconnectPorts.

Note: Not restricted, but consider registering
the port with the component, or keeping it
obtainable and creating it during

getProvidesPort
\ L
\ ’ Pa
¥ .7 =
| Lifecycle Description || Registered ” Obtainable J R ‘
Z
2z 7
Note: Component 4 . ” | | ’ f'
registration occurs component creation [] o ~ -
after creation, but o < .
before initializatioin 1 initialize ” 4 || o ¥ | Port Creation
. 7/
| getProvidesPorts | ’ || [] |
. /'
| disconnectPorts ’ ” || o |
= Port Release
| releaseObject ’ ” [|| o
l, A
\
// A
Note: If registered port creation Al

A}

Note: If the port was not released
previously through disconnectPorts,
then releaseObject trumps all

encounters an error, the initialize
error exception could be thrown.

Figure 8 Port lifecycles

3.1.2 Enhanced Application Connectivity
3.1.2.1 Background

Prior SCA releases only supported the ability to deploy individual, standalone applications. While
multiple applications could be deployed on a platform, the SCA component framework did not
provide direct support to interconnect or logically nest those applications. As a result, the client
creating the applications was left to do this manually, using a combination of external ports and
either “hard coded” interconnection or automatic interconnection using information gleaned from
the application XML.

However, this approach was very limited and required much of the client. Since endpoint
interconnection was not automatically controlled by the SCA a number of challenges existed, such
as the following:

¢ Added complexity to client code — the client code needs to understand how to retrieve and
establish port connections, and for some implementations utilize XML to introspect the
application information.

e Reduced security — in some systems, the ability to make CORBA port connections is
intentionally restricted to preserve application integrity, and for similar reasons, the ability
to obtain the necessary CORBA object references is restricted.

e Abstraction / Information hiding — in some cases, you may want an application to behave
like a single component, and include such a sub-application within an outer component.
Pre-SCA 4 frameworks did not support this manner of abstraction

e Distribution of applications — in some systems (typically those with an application
partitioned across two or more security domains) it is desirable to decompose an application
into sub-applications; with component instantiation and interconnection occurring locally

16

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

within the domain, thus minimizing “bypass” traffic crossing domains during creation. In
prior versions of the SCA this was not supported, leading to non-optimal workarounds.
In the current SCA, a set of capabilities has been added to support the above needs. The two
capabilities, “Nested application support” and “Application interconnection” are addressed in the
following sections. Nested applications may also benefit from the use of the Enhanced allocation
property support, which is described in section 3.1.5.

3.1.3 Nested applications
3.1.3.1 Use cases for nested applications

A simple, monolithic application is still the best solution for many platforms, however several
common situations exist where a hierarchical, nested application presents a better solution.

The first scenario arises from the simple desire to better manage application instantiation and
encapsulate complex application structure into a hierarchical organization. In SCA 2.2.2 and
earlier versions the application structure was “flat”, simply consisting of “leaf” components. This
limitation no longer exists because complex subassemblies now can be formed and abstracted into
sub-applications, which may in turn be combined to form a single application. This architectural
technique can enable a subassembly to be used in different contexts, promoting reuse in common
asset libraries such as those employed in software product lines.

ApplicationManagerComponent

<<ApplicationControllerComponent>>
AppComponent A

v , v

<<ManageableApplicationComponent>> <<ApplicationControllerComponent>> <<ManageableApplicationComponent>>
AppComponent B SubAssembly C1 AppComponent D

y y Y

<<ManageableApplicationComponent>> <<ManageableApplicationComponent>> <<ManageableApplicationComponent>>
Component C2 Component C3 Component C4

Figure 9 Simple nested application

An example of this composition is shown in Figure 9. In this example, an overall application is
made up of four top-level components, with one of the components (AppComponent A)
functioning as the application’s ApplicationControllerComponent. Component C1 however is not
a simple component created by the normal componentinstantiation element within the SAD!, but
rather a sub-application created through an assemblyinstantiation. To AppComponentA this nested
sub-application is abstracted as a single ManageableApplicationComponent, but from a creational
standpoint the “upper level” ApplicationFactoryComponent constructs a true sub-application per a
cited SAD. As is discussed later, in this example there 1is no separate

! Componentplacements are located inside either a componentplacement or hostcollocation element

17

Distribution Statement on the Cover Page applies to all pages of this document.

Version: 4.1<DRAFT>
30 November 2015

SCA Specification User’s Guide

ApplicationManagerComponent produced to manage the sub-application, rather all management is
performed by the upper blue ApplicationManagerComponent. However, this approach is a core
framework implementation decision, and an equally valid approach would have the sub-application
managed by an intermediate ApplicationManagerComponent, through the narrowed interfaces
made available by the ManageableApplicationComponent.

A second use-case arises on platforms which provide encryption in such a way that two or more
security domains are established (e.g. plaintext and ciphertext domains). In some high assurance
environments, these domains are distinct and separated (usually by some sort of cryptographic
subsystem) such that control and configuration communication between the domains needs to be
minimized. In such a system, it could be beneficial to structure an application such that it
resembles two or more independent sub-applications, one in each security domain. A typical
representation of this situation is shown in Figure 10.

ApplicationManagerComponent

<<ApplicationControlleComponentr>> <<ApplicationControllerComponent>>
PtComponent 1 CtComponent 1

+ v v w

<<ManageableApplication
Component>>
PtComponent 2

<<ManageableApplication
Component>>
PtComponent 3

<<ManageableApplication
Component>>
CtComponent 2

<<ManageableApplication
Component>>
CtComponent 3

<<ManageableApplication
Component>>
CtComponent 4

PT Sub-application CT Sub-application

Figure 10 Security domain divided application

In this example, we see a top-level application wholly consisting of two sub-applications, each
deployed in a different security = domain?. The example also has the
ApplicationManagerComponent® ~ distributing properties and controlling two distinct
ApplicationControllerComponents. Be aware that the SCA does not specify how this application is
physically constructed — a clever implementation could distribute the required
CF::ApplicationFactory behavior across the security domains (while still controlling this through a
common CF::ApplicationFactory interface) thus minimizing cross-domain communications.

3.1.3.2 How nested applications work in SCA

While a significant enhancement, SCA support of nested applications is not immediately obvious,
or described in a dedicated section. Support is enabled through a number of small changes
scattered throughout the document. The major modifications required to support this feature exist
in Section 3.1.3.3.1.1 (ApplicationManager), 3.1.3.3.1.3 (ApplicationFactory), and throughout
Appendix D.

2 Not to be confused with an SCA domain — in this system, there is still only one domain manager.
3 Application ManagerComponents implement the CF::ApplicationManager interface and
responsibilities, and are created / supplied by the core framework.

18

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

3.1.3.2.1 ApplicationFactoryComponent support for nested applications

The ApplicationFactoryComponent, via the ApplicationFactory interface, provides the means to
create a single, top-level application. The application is created according to the specifications
provided in a set of XML files, encapsulated by a Software Assembly Descriptor (SAD), which
define how an application will be created. The instructions include which elements are used, and
how they are deployed, configured, and connected.

Earlier SCA versions referred to elements as individual components, which were defined by
Software Package Descriptors (SPD) and so on. The current SCA adds support for nested
applications by allowing not only the creation of components (which could be both “leaf”
components and BaseFactoryComponents) but also the creation of assemblies. These assemblies,
which function as sub-applications, are represented in the outer SAD by an assemblyinstantion
element, itself contained within an assemblyplacement element. While the method and order of
events is left largely to the implementation, the post-condition is clear — after an application is
constructed, all components represented by the outer SAD and those of any child SAD files cited in
assemblyplacements will have been instantiated, interconnected, and a ComponentType (i.e.
ApplicationManagerComponent) returned to the client. Furthermore, only top-level instantiated
applications will be listed in the DomainManagerComponent’s applications attribute; the presence
of any subassemblies is unlisted.

Just as important is what is not specified in SCA. Though not an inclusive list, the following
implementation alternatives were intentionally preserved:

e SCA does not specify the order in which components and subassemblies should be
constructed or initialized.

e SCA neither requires nor prohibits usage of intermediate ApplicationManagerComponents
to manage any sub-assemblies. Put another way, in some core frameworks, an implementer
could choose to have the top level ApplicationManagerComponent only manage the top
level leaf components and delegate any direct subassembly management to a “sub”
ApplicationManagerComponent, while in others, a single ApplicationManagerComponent
could be responsible for all components.

e SCA does not specify details regarding how nested applications are installed in a system.
The DomainManagerComponent’s installApplication() operation only lists a top level SAD
— the deployment of any other necessary files is assumed to have been previously
accomplished, and no assumptions are made regarding absolute or relative directory
placement.

e The nested SAD is no different from an outer SAD. In this way, an implementation could
allow separate installation of the SAD for standalone (“top level”) instantiation, while still
allowing the application to be used as a sub-application by citing it from another SAD.

e SCA, while requiring a single client interface (CF::ApplicationFactory) and compliance to
the requirements of an ApplicationFactoryComponent, does not dictate how the
functionality of this component is distributed across the system. In many systems an
ApplicationFactoryComponent will map to a single component which singlehandedly
guides the deployment. However, other compliant implementations are possible, especially
when an application is deployed across processors or security domains. One such example
would be a central coordinator which implements the CF::ApplicationFactory interface, but
delegates some of its component creation behavior to subcomponents (which need not
implement any specific interface). This federated deployment could minimize cross
processor or cross domain communications in some cases, speeding up deployment, etc.

19

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

3.1.3.2.2 ApplicationManagerComponent support for nested applications

The ApplicationManagerComponent* has two broad responsibilities, which were expanded with
the introduction of nested applications. The first responsibility is to tear down the application
instance created by the corresponding ApplicationFactoryComponent. When nested applications
are supported in SCA, the allocation of the teardown responsibilities is unspecified. One
implementation approach would be for the top level ApplicationManagerComponent to manage top
level components exclusively, with one of them being an ApplicationManagerComponent which
manages its sub-application components. The advantage of this approach is one of symmetry (each
SAD creates an application and is managed by an ApplicationManagerComponent) and it is most
similar to prior SCA core framework implementations. However, other implementations are valid.
For example, SCA does not require ApplicationManagerComponents to manage the sub-
application components — instead a single, top-level ApplicationManagerComponent could be
responsible for tearing down all components (and port disconnection, etc.). This approach may be
more efficient in some cases or better centralize the domain data.

Secondly, ApplicationManagerComponents are responsible for distributing client calls made to the
Base Application interfaces, specialized by the CF::ApplicationManager interface, to the
application. In earlier SCA versions distribution was straightforward, all calls were to be passed to
a single component which realized the CF::Resource interface (not an assembly) that was
designated as the assemblycontroller in the SAD. If the DMD accardinality attribute has a value of
“single”, only one designated assemblycontroller exists, and the ApplicationManagerComponent
responsibilities remain the same. However in implementations that implement the
NestedDeployment UOF and have a DMD accardinality attribute with a value of “multiple”,
multiple assemblycontrollers are allowed and those assemblycontrollers are allowed to refer to an
assemblyinstantiation. When this is the case, the ApplicationManagerComponent is not able to
forward configure(), query() and runTest() as it did before. Instead, it must examine each
individual property and forward it to the appropriate assemblycontrollers based on the information
contained in its top level SAD and derived XML files (which in the nested case would include at
least one additional SAD). Additionally, as multiple properties can be listed in a configure or
query call, the ApplicationManagerComponent may also be required to break up those calls, or
potentially combine their results and exception behavior.

3.1.4 Application Interconnection
3.1.4.1 Overview

An alternative to having a single, monolithic application would be to have multiple independent
applications that collaborate with one another. The SCA application interconnection capability
provides a standardized approach for how to address the problem of establishing connections
between framework components modeled as applications. Prior to the introduction of this
capability multiple solutions were used to address this problem, complicating software reuse and
portability. Its introduction should alleviate those problems and ensure that a uniform realization of
this approach is available across platforms.

4 Prior to the introduction of the SCA Component Model, there was no formal
ApplicationManagerComponent, instead all requirements were allocated to an unnamed CF
component which implemented in the CF::ApplicationManager interface.

20

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

3.1.4.2 Use case for interconnecting applications

A scenario which highlights the need for multiple independent applications would be one that
requires a system with a clear separation of concerns and loose coupling of components. For
example, a radio platform that contains an Android presentation layer which provides a general
purpose user interface that manages and monitors the system. This system could have been
designed in accordance with the Model, View, Presenter pattern where the applications to be
connected would be the waveform (Model) and Ul intermediary (Presenter).

Earlier SCA versions did not have a means for the framework to form these connections. The SAD
contained the externalports element, which by definition provided a means for an application to be
connected with components (application or otherwise) external to a waveform, but no
corresponding framework guidance or requirements to establish those connections. Typically, the
gap was filled by introducing an additional component within the system to perform that
functionality.

3.1.4.3 Application interconnection design

The current SCA defines a formal mechanism that utilizes the externalports element as the conduit
to manage the formation and destruction of those inter-application connections. The external port
connection construct provides a good solution because it aligns with the nature of the problem —
two applications that need to be connected with one another but they are created independently and
there are no guarantees that they will be created. Consequently, the connection mechanism must
accommodate instances when one side of the connection does not exist.

External Port Connection
SAD B Would use the approach in Figure 16,
_ b “Inter-application connections with
8§2:§2§SBB A - -~ external ports”, to do this
SAD A
Deploys A
\ 5
_|- Deploy 0..nB’s

-~ " | Number of B's created
could vary in this Use Case

- 5

Figure 11 Inter-application connections

3.1.4.4 Application interconnection implementation

Building upon the earlier scenario, both the waveform and the presentation layer will have their
connections described in their respective SAD files. The Android presentation layer, application A,
contains a provides port that can be accessed and used by other applications, so it will identify that

21

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

port within its externalports element as a providesidentifier. The waveform, application B, wishes
to be connected to the presentation layer’s external port, so in one of its SAD connections it
specifies a connection between its local uses port and the externally provided provides port from A.
The example illustrates that only one application needs to define the connection for it to be
processed by the framework.

SAD B external port name
<connections> 7 |
SAD A <connectinterface id="B_to_A"> .
<usesport> P
<softwareassembly id="DCE:1..." name="A_fac"> <usesidentifier>B_out_port</usesidentifief*
<componentinstantiationref reﬂd="DCE:,1/.. B
<externalports> <lusesport> ’
<port> <providesport> ¥ ’
<providesidentifier>A_ext_in_port</providesidentifier> <providesidentifier>A_ext_in_port</providesidentifier>
<componentinstantiationref refid="DCE:1..." /> <findby>
</port> <domainfinder type="application” name="A_name" />
</externalports> </findby>
; 7 </providesport> o
</connectinterface>" ’
<[connections> /. —
<
Looking for any application in
ﬁ the domain named “A_name”
create passingin Application i~ — 47! Application ~
name=A_name (A_name) -4 - (B_name)
N
?) “| ApplicationFactoryC
(A_fac) ApplicationFactoryComponent

(B_fac)

A_AC B_AC /

Figure 12 Connectivity specific example

3.1.4.5 ApplicationFactoryComponent support for interconnected applications

SCA now includes an additional type, application, within the domainfinder element. The semantics
associated with this type provide the framework with information describing the elements that will
be included within connections and how those connections should be formed. The
ApplicationFactoryComponent retrieves the connection endpoint via the domain’s domainfinder
element. When the application type is used, no implicit creation behavior is intended, so the
framework is not expected to instantiate an application if it does not exist. If neither endpoint exists
or can be resolved, then the specification permits implementation specific behavior. However, the
desired approach in the aforementioned scenario would be for the connection to be held in a
pending state until it can be established (note that in this approach either the waveform or the
framework will need to have sufficient safeguards to ensure that a call to this connection prior to its
formation does not result in an unexpected or uncontrolled termination). An alternative course of
action would be to prevent the application from being instantiated, although this seems excessive as
a well-designed waveform should not have critical dependencies that exist across application
boundaries.

22

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015
SAD B
External Port A_Port] Deploys B_AC
SAD A [+ [SRR A] Declares External Port B_Port
\ \ Connects B_Port = A_Port
Deploys A_AC \

Deploys A_Comp

Connects A_AC— A_Comp
Declares External Port A_Port Application l
(A) |

i

) Application

! Q L (8)
\
\
\
\
\

Logical Connections

The logical connection from
an “external port” perspective ApplicationFactoryComponent
is also a port connection

between the two applications.
1
l
]
X II Y
AN h /\

1
A_Comp H A_AC } O [B_AC

| -
1_4—

L &

ApplicationFactoryComponent

Figure 13 Inter-application connections with external ports

The ApplicationFactoryComponent must be able to accommodate multiple connection strategies
depending on the information provided in the domain profile. When only the application name is
specified, any ApplicationManagerComponent in the domain with that name can be used. When
both the application factory and application names are specified, only the named
ApplicationManagerComponent created by the specified ApplicationFactoryComponent may be
used. When only the application factory name is specified then any
ApplicationManagerComponent created by the specified ApplicationFactoryComponent may be
used.

3.1.5 Enhanced allocation property support
3.1.5.1 Overview

Several use cases exist that require the framework to have the ability to constrain the deployment of
application or nested application components. SCA 2.2.2 provided this capability with the channel
deployment functionality contained within the Software Communications Architecture Extensions
specification. Those capabilities were included within this SCA revision, and an alternative
approach was provided with the introduction of nested applications. Nested applications extend
SCA 2.2.2 allocation properties by making them more dynamic and accessible to nested
applications. The new constructs provide users with the ability to deploy nested applications to
different domains.

3.1.5.2 Descriptor structure for nested applications

The SAD’s definition was modified in this SCA release to accommodate nested applications. An
SCA application consists of 0 or more components and 0 or more nested applications. The nested

23

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

applications incorporate a new element, applicationinstantiation, which is similar to a
componentinstantiation, but has different sub-elements.

Nested applications are similar to a ManageableApplicationComponent in that they can receive
properties, deviceassignments and deploymentdependencies. However they differ from those
components in that they cannot be created by a BaseFactoryComponent. The information in the
applicationinstantiation element is intentionally similar to the ApplicationFactory::create() call.
This similarity permits an implementation to use the ApplicationFactory::create() operation to
create a nested application.

<!ATTLIST componentfile

1d 1D #REQUIRED Type can be “software package

type CDATA #IMPLIED> — descriptor” or “software assembly
<!ELEMENT partitioning descriptor”

(componentplacement | hostcollocation

| assemblyplacement) Assemblies may consist of both

) +> components and assemblies (e.g.
<!ELEMENT assemblyplacement SAD). However, assemblies
(componentfileref cannot be inside hostcollocaton
, assemblyinstantiation+ sections and cannot be created
by-component factories.
) > New element; modeled after
<!ELEMENT assemblyinstantiation —~" | componentinstantiation.

(componentproperties? , Componentproperties (configureproperty type
, deviceassignments? , only), override nested SAD similar to that in

create call and deviceassignements and
deploymentdependencies act in the same way
as if passed into ApplicationFactory::create().

, deploymentdependencies? ,
, executionaffinityassignments?
) >

<!ATTLIST assemblyinstantiation Nested assemblies can also serve as
id ID #REQUIRED> ///”///////—_ application controllers

3.1.5.3 SCA Enhanced Allocation Properties

SCA 2.2.2 allocation properties could only be assigned in .prf files, and not overridden. Similarly,
dependencies were specified in .spd files, and could not be overridden. This severely limited the
manner in which they could be used.
The SCA deploys components by evaluating dependency requirements against existing component
allocation property definition. As an example a DeviceComponent (or other component) defines an
allocation property in a .prf file as follows:
<simple id="RadioChannel" type="short" name="RadioChannel">
<value>0</value>
<kind kindtype="allocation"/>
<action type=“eq"/>
</simple>
Then a component to be deployed establishes a dependency against the allocation property by
stating the type of device it requires:
<dependency type="RadioChannelDependency">
<propertyref refid= "RadioChannel" value="5"/>
</dependency>

24

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

If the dependency can be satisfied by one of the component allocation property definitions within
the domain, then that DeviceComponent becomes a usage or deployment candidate.

SCA now provides the ability to override component allocation properties in the
componentinstantiation section. This allows a system designer to assign different values to
allocation properties on a per-instance basis, e.g. “the channel 4 instance of the GppDevice gets the
deployedChannel allocation property overridden to 4”. In prior SCA versions, a system designer
would have had to edit the component’s .prf file or use the SCA extension .pdd file to accomplish
this. SCA also introduced a capability to specify SAD and create() based deploymentdependencies.
The deploymentdependencies element specifies a list of dependencies which can override SPD
defined dependencies (either within deployment or as part of a uses device connection). The
dependency relationship is overridden, not the allocation property, which differs from other
“property overrides”. Lastly, a list of deploymentdependencies can be passed into the
ApplicationFactory::create() operation to allow client-controlled dependencies (e.g. radio channel)
to be specified.

3.1.5.4 SCA Dependency Hierarchies

SPDs define the dependencies for a particular component type. Unless overridden, these definitions
apply to all instances of the component.

As shown in Figure 14, SAD componentinstantiations can optionally override a dependency for a
given instance — if the SPD uses the dependency for deployment or a usesdevice relationship. This
would, for example, allow an application to place two instances of the same component in different
domains.

An optional top-level SAD deploymentdependencies element allows for global dependency
overriding across all applicable application components (see Figure 14). Using this approach does
not impose the dependency on a component, but overrides it as if a like-named dependency existed
within the component’s SPD. This approach is likely more applicable within an assembly that uses
nested applications.

25

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

ApplicationFactory Create()
Deploymentdependency
parameter
(override)

Y
SAD top-level
Deploymentdependcy
(override)

'

SAD componentinstantion ‘

Deploymentdependcy
(override)

Only apply dependency if
it name matches .spd
* dependency

SPD Implementation -level
Dependency

\J

SPD-level Dependency

Figure 14 Dependency Hierarchy

At the highest level of the dependency hierarchy, a client could supply deploymentdependencies
which could be applied to the entire application. A common usage scenario would be to specify a
radio channel placement dependency. As Figure 15 depicts, when application nesting is used, the
rules stay the same but overriding occurs from the outermost SAD (highest precedence) to the
innermost SAD. An additional deploymentdependency is added to the assemblyinstantiation
element. This allows dependencies to be supplied that would apply to the nested application (and
any of its children). A common usage scenario for this capability would be to place distinct sub-
applications in different domains.

26

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

ApplicationFactory Create()
deploymentdependency
parameter
(override)

SAD top-level
deploymentdependency
(override)

Outer SAD

\ 4

SAD assemblyinstantion

deploymentdependency
(override)

Y
SAD top-level
deploymentdependency
(override)

\J
SAD componentinstantion
deploymentdependency
(override)

Inner SAD

Y

SPD Implementation -level
Dependency

v

SPD-level Dependency

Figure 15 Dependency Hierarchy and Sub-Applications

The following table provides an example of a class of allocation properties and how they might be

used within a system:

Element | Typical use Example

ApplicationFactory Create()
by client

Outer .sad top-level

Outer .sad
assemblyinstantiation

Nested .sad top-level

Nested .sad
componentinstantiation

.spd dependency element

.prf allocationproperty
DEFINITIONS

Controls placement of an specific application instance. radioChannel eq 2
Typical use would be placementon a specific radio
channel and/or domain

Uncommonly used. Controls placement of an overall
application that is not instance specific

Controls placement of a given nested application domain eq “green”
instance. (if instance specific)

Controls “hard coded” placement of a nested application. domain eq “purple”

Used when instance-specific overriding is not used / (if fixed for application)
needed. Typical use would be for forcing locationto a

specific domain

Uncommonly used

Defines dependencies actually needed by a component. radioChannel eq 0
Note that if not specified, cannot be overridden. “Default” domain eq “white”
values allowed

Set in .spd/ .scd prf files, can be overridden at radioChannel = 5
component instantiation domain = “blue”

Figure 16 Allocation property examples

27

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

3.1.6 Lightweight Components
3.1.6.1 Overview

Lightweight Components and Units of Functionality (UOF) are the mechanisms which can be used
to better align SCA based products with mission requirements. Lightweight Components provide a
flexible architectural approach that accommodates various platforms requirements (mobile versus
static, single channel versus multiple channels, single waveform versus multiple waveforms, small
form factor, etc.).

Users commented that the SCA 2.2.2 interface associations led to a one-size-fits-all implementation
which resulted in components being larger than necessary. For example, an SCA 2.2.2 resource
component includes testable objects, properties, etc. However, if a component doesn’t need a self-
test capability or properties, the specification still required its developer to implement that
functionality. The developer could circumvent the problem by removing the inherited interface
manually, which could lead to compliance issues, or providing a stubbed implementation that
would be compliant but introduce dead code and increase product size.

The current SCA utilizes an optional composition pattern to address this problem. An example of
how this feature is included within an SCA component is illustrated in Figure 17. The SCA
convention is to label each optional composition association with its designated Unit of
Functionality.

«interface» «interface» «interface» «interface»
CF:.LifeCycle CF::Componentidentifier CF::Testableinterface CF::PropertySet

0..1 \).41 0.1 0.1

«INTERROGABLE» «TESTABLE»

«CONFIGURABLE»

«interface»

CF::Controllablelnterface «interface»

«RELEASEABLE» CF::PortAccessor

0..1

0.1

—
«CONTROLLABLE» SCOECHARLES

BaseComponent @

«connects»

«interface»
CF::ComponentRegistry

+connectedComponent *]
«registers»

B

+domainProfile

Descriptor </ |1.* «produ ces»\
«produces consumes» +targetL§
I'I +eventChanneN
Type of Properties, i.e. +property * Log Service
test, configure, query
dictates some of the . For
Componet supported ComponentPropeies @f‘]
interf
intertaces Event Service

Figure 17 Component Optional Composition

28

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

3.1.6.2 Benefits

Each optional composition flag shown in the Unified Modeling Language (UML) is associated
with a UOF in Appendix F [6]. Having the ability to eliminate unnecessary interfaces allows
components to be smaller and more focused than components realized in accordance with earlier
SCA versions. Having fewer interfaces to realize reduces a component’s footprint size; one should
remember that there are size implications associated with stubbed implementations. The savings
realized from a single component might be minimal, but the amount can add up when extended
across all of the components that comprise a radio set. Omitting rather than stubbing unneeded
operations can also improve a system’s assurance profile because it eliminates a potential
vulnerability of having an additional system operation, in this case one that might be given less
scrutiny because it was not intended to be used. Lastly, omitting the extraneous interfaces can
reduce development time across the entire software development life cycle. Making a decision to
not implement an interface early in the development cycle reduces a cascade of requirements that
span the entirety of the development process. When the decision is made to implement an interface,
even a dummy implementation, it incurs additional costs such as requirements analysis, design
decisions, development time, software integration and testing and compliance testing. The total
effort saved as a result of not performing those activities can result in a significant time savings that
will grow linearly as additional components are incorporated within the system.

3.1.6.3 SCA Solution

During the design process two approaches were considered as routes to get to the endpoint of
lightweight components. The selected approach, illustrated in Figure 18, can be thought of as
optional composition. In optional composition, a component would only realize the interfaces
“<interface>" that it needs. In the example, the My WF Component realization would have the
option of providing an implementation for either the PropertySet and/or the Lifecycle interfaces.

<interface> <interface>
CF::PropertySet CF::Lifecycle
g <

My WF 2]
Component

'I
N

Figure 18 Component Optional Composition

3.1.6.4 Implementation Considerations

The optional composition approach comes with implications on the framework implementation
which are associated with the two scenarios represented in Figure 19. In the example on the left,
the framework needs to account for My WF Component having a relationship with either or both
interfaces. In the other scenario a component implementation defines an implementation specific
interface to act as an intermediary that combines the required interfaces into a single reference. In
this case the framework cannot make any implementation decisions that preclude a developer from
utilizing that type of design. Both of these are viable alternatives, and existing Core Framework

29

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

implementations may need to incorporate additional “is_a” calls within a CORBA PSM, to
determine whether or not a component realizes a particular interface.

<interface>

<interface>
CF::PropertySet

<interface>
CF::Lifecycle

<interface>

CF::PropertySet

C\
N
\

CF::Lifecycle

<interface>

AN

My WF 2]
Component

My WF &]
Component

Each component would
introduce a new interface
to combine interfaces into
a single reference

. Components would
only realize the

interfaces that are
needed

Figure 19 Optional Composition Design Approaches

Additionally, the ApplicationManagerComponent does not use any of the lightweight
configurations. This constraint is included to preserve backwards compatibility with earlier
implementations.

An important point to keep in consideration is that Lightweight Components are an optional
capability. If a developer chooses not to leverage the optional composition capability then they are
able to develop compliant applications that are very similar to those produced in accordance with
SCA 2.2.2. Some developers may determine that the enhancements provided by Lightweight
Components do not exceed the cost benefit threshold associated with the change. However
Lightweight Components provides SCA users with a common pattern and approach to optimize
components for those that would benefit from the capability.

3.1.7 Component Model
3.1.7.1 Overview

The SCA component model provides a means to improve the clarity and consistency of the
specification. Earlier SCA versions contained numerous references to “components”, but did not
define the term and used it very inconsistently throughout the document. Consequently, a large
burden was placed on the reader to determine which elements described the attributes of runtime
system elements. The presence of the component model also provides a foundation for the use of
software modeling and Model Driven Development techniques within the development of SCA
compliant products. Figure 20 illustrates some of the SCA components.

30

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

BaseFactoryComponent 8

Wad
.33’

K " BaseRatformComponent 3)

DcviceComponﬂ‘@

ApplicationComponent 8]

AssemblyComponent @

AN

FileManagerComponent 8 AggregateDeviceComponent 8

BaseComponent 8

File SystemComponent @
FileComponent 8
(O Avstract Component ([0 Non-CF Service Component

B Base Application Component @ Base Device Component
Q CF Service Component g Framework Control Component

Figure 20 SCA Component Relationships

3.1.7.2 Interfaces and Components

SCA 2.2.2 was expressed in terms of interfaces, or more specifically CORBA interfaces.
Accompanying each interface specification was information describing its associations, semantics
and requirements. This representation of information was often challenging for new readers of the
specification because it did not align with their expectations of what an interface should provide
and it did not support an easy decomposition of implementation responsibilities.

An interface is a shared boundary or connection between two entities. It specifies a well-defined,
and limited role which needs to be fulfilled. The role may either be functional (defined specific
behavior to be performed; “to do” or non-functional (identifies criteria used to judge the qualities
of operation: “to be”). Interfaces define “what” needs to be done, “why” something needs to be
done, but not “how”_to do it. As such, most pure interfaces tend to be stateless.

Since a well-defined interface defines a limited role, and complex system elements generally need
to fulfill multiple roles, multiple, separate interfaces are often required to fully support the set of
functional and non-functional requirements. It is often the case that multiple interfaces need to
interact with one another and only certain sequences of those interactions will result in useful
functionality. Therefore it is often useful to package these interactions between multiple interfaces
into an integrated unit of defined behavior known as a component.

31

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

A Component is an autonomous unit within a system or subsystem. Components provide one or
more interfaces which users may access and encapsulate the internals of how they are provided
other than as accessed by their interfaces.
Components provide a modular, replaceable part of a system, which within its defined
environment:
e implement a self-contained lifecycle, which may include sequential interaction
requirements which exist between multiple provided interfaces
e present a complete and consistent view of its execution requirements (MIPS, memory, etc)
to its physical environment
e serve as a type definition, whose conformance is defined by its ‘provided’ and ‘required’
interfaces
® encompass static and dynamic semantics

Table 2 Characteristics of Component and Interfaces

Interface Characteristic Component Characteristic

Role -oriented = best suited as problem domain | Service -oriented = best suited as solution
/ analysis-level abstractions domain / functional-level abstractions
Conceptual / Abstract / Unbounded Practical / Concrete / Constrained
Responsibilities Responsibilities

Have no implementation mechanisms Can — and often do — provide prototype or

default implementations

A necessary, though not sufficient, element of Properly-developed, Components improve
Portability and Detailed Architecture / Design prospects of Portability and Detailed

Reuse Architecture / Design Reuse

Interfaces are generally SYNTAX without an Components MUST HAVE well-defined
underlying SEMANTIC definition, and are SEMANTIC baselines because they fulfill
generally seen as STATELESS as a result multiple Roles within a Framework -

Components are MUCH-MORE than the sum of
the Interfaces which they implement

3.1.7.3 Benefits and Implications

The introduction of the component model provides a concrete bridge from interface to
implementation responsibilities and a well-defined path for integrating model based software
engineering techniques within the development process. Having these abilities will be even more
important as usage of SCA optional composition becomes more prevalent.

The textual and formatting changes associated with the incorporation of components within the
framework are visually intimidating because they introduce several new sections, new model
elements and relocate text. The division of responsibilities may at times look duplicative e.g. why
there is a need for a DomainManager interface and a DomainManagerComponent. However, as
you read the corresponding sections it will become apparent that in most cases the component
oriented sections include semantics and requirements associated with deployed or executing
systems or elements.

32

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

In terms of the SCA product implementation, the impact of the component model should be
negligible. The component model does not contain any constructs that map into IDL, therefore any
requirements that are implemented by a product developer must be done within the context of the
IDL generated from the interface definitions. In fact, the layout represents how most current SCA
developments already implement their software elements:
e The developer creates an implementation class that represents a component, e.g. a
Manageable ApplicationComponent
e The implementation class has associations with other classes that correspond to
CF::LifeCycle, PortAccessor, PropertySet and other interfaces
e The implementation fulfills the roles, behaviors and interfaces prescribed by its
incorporated SCA elements
The component model is still a work in progress within the specification for a couple of reasons.
There were a number of modifications made to accommodate inclusion of the new concept and it is
fully expected that some elements that should have been moved were not. Secondly, at time of
publication, the group had not come to consensus on far reaching decisions such as whether or not
exception throwing should be described in an interface or component sections.
It is expected that these and other issues related to components will continue to evolve in future
revisions of the specification, however, consistent with the earlier discussions, these modifications
will improve the quality of the specifications and enhance its use within modeling environments
but they should have no impact on an SCA product implementation.

33

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

3.1.8 Units of Functionality and SCA Profiles
3.1.8.1 Overview

Earlier SCA versions have subscribed to a “one size fits all” approach to implementation and
specification compliance. The documents described the SCA elements and associated a set of
requirements with each construct. When a developer chose to incorporate an instance of one of
those elements they were responsible for implementing all of the associated requirements or
seeking a waiver for any capabilities that were not provided.

The SCA Units of Functionality (UOF) and Profiles were developed to address the restrictions
imposed by the earlier specifications. The intent behind the UOFs was to introduce a set of flexible
constructs within the framework that allowed SCA to accommodate a wide variety of target
platform (e.g. resource constrained, fixed wing aircraft) and architecture (e.g. single versus multiple
channel) specific requirements gracefully which in turn support the development of more “mission-
focused” products.

The primary benefit associated with having UOFs is that they provide a standardized approach that
allows interfaces and requirements that are not appropriate for a product to be omitted from the
component specification. The elimination of these requirements has the following ancillary
benefits:

e Reduced footprint — being able to omit unnecessary interfaces reduces the size of the
deployed object. Even a stubbed interface realization requires a small amount of space and
these small savings can add up

¢ Increased assurance — reducing the size of the developed object increases the degree to
which the code can be assessed. The reduction in size minimizes the number of locations in
the product that could be exploited. Likewise, having dead or stubbed code introduces
additional locations where vulnerabilities might exist

e Reduced development time — having fewer requirements has a direct correlation with
smaller projects and shorter development cycles

¢ Enhanced product performance — reducing object size and removing unnecessary modules
improves the performance as there is less code to execute and fewer opportunities for
superfluous context switches

3.1.8.2 SCA UOFs and Profiles

SCA UOFs were intended to be understood in a manner similar to their POSIX® namesakes: a Unit
of Functionality is a subset of the larger specification that can be supported in isolation, without a
system having to support the whole specification. The initial design philosophy behind UOFs was
that they should be restricted to optional SCA features. However, this was relaxed as the
specification matured so there are some UOFs that are associated with mandatory capabilities. Part
of the rationale behind the expansion was to identify and highlight tightly coupled requirements,
the other was to accommodate discussions regarding whether or not some of those capabilities
might become optional in the future. Even with the expansion not all SCA requirements are
associated with a UOF.

® POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

34

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

The Profiles comprise a set of UOFs, the collection of which is intended to be aligned with
common, real world platform configurations. SCA Profiles are only applicable to OEs because it
was easier to forecast a relatively small set of common configurations for distinct classes of target
platforms. The profiles provide a common, easy way to select a UOF configuration of compliant
SCA radios, from an almost infinitely flexible platform with the Full Profile, to a
minimalist,Lightweight Profile, platform where the radio boots and begins executing a single
waveform with little configuration and processing.

3.1.8.3 Use of UOFs and Profiles

Appendix F (reference [6]), similar to many of the other SCA documents, provides a couple sample
conformance statements. The UOFs and Profiles provide the mechanism to align a product’s design
with its mission. The product developer must communicate a product’s capabilities to external
consumers and stakeholders. The following text represents an example conformance statement:
“Product B is an SCA conformant Operating Environment (OE) in accordance with the SCA
Medium Profile containing an SCA Lightweight Application Environment Profile conforming
POSIX® layer and an SCA Full CORBA Profile transfer mechanism”.

In this example the statement contains an explicit reference to a profile (Medium). Figure 21 dictates
the approximately 226 requirements that are applicable requirements for this product. The Medium
profile contains the Management Registration, AEP Provider and Deployment UOFs and the specific
requirements are identified in the SCA Appendix F Attachment 1: SCA Conformance mapping
spreadsheet.

® POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

35

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

Full Optional +up to 101

234
Management Application Backwards Compatible
Un-registration

AppDeploymentData

Management
Releasable Application Installable
) AppReleaseable
Medium
226
CORBA Provider
Management
Registration Channel Extension
DeviceMgrDeploymentData
Lightweight

Event Channel
221

AEP Provider SRl

Log Producer

Deployment
Nested Deployment

PlatformComponentFactoryDeployment

Figure 21 SCA Profiles with OE Units of Functionality

The sample conformance statement could be refined to include additional units of functionality as
follows: “Product B is an SCA conformant Operating Environment (OE) in accordance with the
SCA Medium Profile which contains an SCA Lightweight Application Environment Profile
conforming POSIX® layer and an SCA Full CORBA Profile transfer mechanism, and extended by
the Log Capable, Log Producer and Event Channel UOFs”.

The majority of the SCAs ability to be tailored resides within the optional UOFs. At the
BaseComponent level 14 standardized capabilities and approximately 81 requirements exist that could
be applied to a component.

The SCA was not developed with the intent of excluding a mandatory unit of functionality from a
profile. The likelihood of having to do so now is unlikely as the profiles do not include that many
UOFs, however the profile concept is still developing so the benefits of utilizing that type of
strategy will need to be evaluated if the need arises.

3.1.9 Late Registration

Component registration is accomplished using a push model approach as described in Section 3.2.
The SCA components which provide a registration capability are the
ApplicationFactoryComponent, DeviceManagerComponent and DomainManagerComponent,

In most instances component registration follows a standard pattern; a component registry, that is
associated with a manager component, comes into existence, the manager component deploys all of

® POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

36

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

its components which subsequently register with their deploying component via its associated
registry, the manager component takes whatever actions are necessary to finalize the registration.

3.1.9.1 Application Registration

Figure 22 illustrates what occurs when an application is deployed on a platform. After the
ApplicationFactoryComponent deploys each ManageableApplicationComponent, the deployed
component registers with the ApplicationFactoryComponent. Upon successful application creation,
the ApplicationFactoryComponent returns an ApplicationManagerComponent which contains
information describing all of the application’s components. Both the values of the

ApplicationFactoryComponent and the created ApplicationManagerComponent are stored within
the DomainManagerComponent.

Any GPP
CF CF OE OE OE
Domain pplication Device|| ¢ee | [Device App
Manager| | Factory 1 n Component (ComponentType
identifier =
[— profile =| | Manageable
/// type = Application
componentObject=| Component1
i providesPorts =
7 specializedinfo=| | Deployment
e e T ~ / ,/ § Attributes
identifier = ,’
profile f Application < 1. registerComponent Each ManageableApplication Component uses
tOt:y pet: Manager the standard ComponentType and register’s with
comp’:'(;r\‘l?;esP :)er(t:s; _1.1registerComponent its Appli::ationFactory’s ComponentRegistry
specializedinfo = R
P Managerinfo S \ SETPEIEI e
PNy o \ identifier =
i App Comp n The ApplicationFactory \‘ profile = I:an:g::::e
returns an ApplicationManager —— type = A PP "
= to its client componentObject = om;:‘onen
~ S< / providesPorts =
N ‘ specializedInfo =| | Deployment
> Attributes
Each manager

(ApplicationManager)
holds all of the
components deployed by
the application.

Figure 22 Application Component Registration
3.1.9.2 PlatformComponent Registration

PlatformComponent registration behaves in a similar manner as illustrated in Figure 23. Typical
deployment of a PlatformComponent is initiated by a DeviceManagerComponent. As each
PlatformComponent is instantiated it registers with its deploying DeviceManagerComponent. The
“registration finalization” activity for PlatformComponent registration occurs when a
DeviceManagerComponent registers with a DomainManagerComponent. A feature of
DeviceManagerComponent registration is that in addition to registering itself, any
PlatformComponents that have previously registered with the DeviceManagerComponent are
registered with the DomainManagerComponent.

37

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015
Any GPP - = = -
CF CF OF OF OF) om.ponent ype
Domain Device Device || ¢ee | |Device Device |denrt;tf'|;; _
Manager| || [Manager| 1 n n+1 P G z Device 1
componentObject=
e — | providesPorts =
/ 7| specializedinfo=| [Allocation
1. registerComponent| | Properties
< ")
’
(ComponentType h / [r— 1 (ComponentType

identifier = = _ S identifier =
profile =) [/—\ 2. registerComponent /l profile =

type = Device - I/ type =| | Devicen
componi"“o:leﬂ = Manager 2.1 registerComponent Each Device uses the EEi el E=
provides! orts = < e providesPorts =

specializedinfo = Managerinfo e N specializedinfo=| [Allocation

N TR \\ \‘ Properties

Device n -~ » S
When first registering with DomainManager, the \

DeviceManager providesit’s own ComponentTypeand\\
(N / each registered componentis passed via specializedinfo\
with an ID value of MANAGER_INFO_ID. \

1 ComponentType) ComponentType
i i = identifier =
|depnrt(|;|_ltle; : LT) 3. registerc?mponent profile = Beics
type = Device B type = i
componentObject = 3.1 registerComponent componentObject=
providesPorts = < proyid_esPons =
specializedinfo = DeviceManager hai + 4 specializedinfo =
Somponontid For “late registration”, the DeviceManager forwards the Lot
Allocation ComponentType of the component thatregistered late.
Properties In specializedinfo it passes the identifier of the
_ ') DeviceManagerComponent that this componentis

associated with.

Figure 23 Platform Component Registration

3.1.9.3 Late Registration

Within SCA, late registration is defined as any PlatformComponent registration that occurs after
the initial registration of its associated DeviceManagerComponent. According to this definition
there are several scenarios which fall under the classification of late registration. The model
scenario for late registration is associated with plug and play components that are introduced within
a platform after the system has been up and running. A nuanced scenario arises in the typical
deployment approach. SCA does not have a mandated time when a DeviceMangerComponent has
to register so it would not be far-fetched to envision a situation where that manager would deploy
15 components and register with its DomainManagerComponent after 10 of the deployed
components had registered with it. Fortunately, the design of the ComponentRegistry interface and
the registration strategy is flexible enough that it can accommodate both scenarios. There have been
suggestions that the approaches to regular and late registration are duplicative and the regular
approach should be removed. The claim is a reasonable one but we have chosen not to take any
action within the specification until the relative merits of both approaches have more concrete data
upon which to make a determination about a way forward.

Figure 23 also illustrates the late registration scenario. In the example Device n+1 registers after the
DeviceManagerComponent registered with the DomainManagerComponent. As a result, the
DeviceManagerComponent implementation needs to recognize that is has already registered with
the DomainManagerComponent and this is a new component registration. Once that determination

38

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

has been made, the DeviceManagerComponent is responsible for registering that component within
the domain. The DeviceManagerComponent adds the registering component to its set of registered
components and forwards the registration. The only modification made by the
DeviceManagerComponent is the addition of an entry within the PlatformComponent’s
specializedInfo which indicates its associated DeviceMangerComponent; this information is used
by the DomainManagerComponent as it registers the component.

3.1.10 Enhanced Process Collocation Support

Applications across all device categories continue to require better performances. Two main trends
are driving the embedded device market today:

¢ Smaller form factors

¢ Improved performance per watt
However, traditional methods of achieving better performances via higher clock frequency lead to
increased thermal dissipation and energy requirements. Multicore technology provides an
alternative solution which improves performance per watt ratios and reduces board real-estate
requirements.
This SCA release introduces support for enhanced process collocation and core affinity
architectures within the framework. Core affinity is defined by its constituent parts —

e core = a complete set of registers, execution sets, etc. that are needed to execute a program

e affinity = the state of being bound to a specific logical processor

3.1.10.1 Background

POSIX® Operating Systems support dynamic loading of libraries and dynamic creation of threads
within an OS process address space, thus allowing threads to be dynamically added to an OS
process. Furthermore, today’s operating systems support multi-core processors and different
techniques to execute processes/threads across different cores.

Multi-core processors can operate using one of two approaches. Symmetric Multi-Processing
(SMP) has a single operating system which controls more than one identical processor/core. In
SMP, all processors/cores must be able to access the same memory and the same I/O devices.
Multiple operating systems are used within Asymmetric Multi Processing (AMP), where one
operating system exists for each processor/core. There is a great deal of flexibility within this
approach as operating systems do not need to be the same and their processors/cores do not need to
be identical.

Given the choice; SMP is the better alternative when communication speed between cores is
critical or the workload needs to be distributed dynamically across processors or cores, while AMP
is better in situations when communication speed between cores is not critical and more than one
operating system is present.

Most common Operating Systems support SMP using a scheduler which allocates each task to a
core while only a limited number support AMP. Real-time operating systems provide users with
the ability to influence the scheduling of time-critical tasks. This ability is generally offered as part
of core affinity.

® POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

39

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

3.1.10.2 Earlier SCA Capabilities

Prior to this extension SCA provided the ability to collocate either (all) platform or application
components within the same OS process address space using a factory component but the factory
was not able to create both types of components within that process. In addition, factories were
somewhat static in nature as they are preconfigured with the types of components that they can
create. SCA also provided limited support for multi-core devices deployment via the
ExecutableDeviceComponent. The system designer was able to model the platform using either a
single ExecutableDeviceComponent per core or one component for multiple cores. Using either
strategy allowed the framework/OS to make the determination of where each executable should be
deployed.

3.1.10.3 Enhanced SCA Capabilities

The process collocation enhancements provides support for the following features:

e executable Device Component dynamic threading.

* mixing ApplicationComponent and PlatformComponent threads within the same OS

process space.

* multi-core devices deployment via core affinity requirements.
Affinity was introduced because it introduces a valuable capability within the framework,
represents the most basic SMP scheduling technique and is widely supported by embedded
operating systems. The proposal does not introduce any more advanced scheduling techniques
because their implementations are more proprietary in nature. However, core affinity can be
extended to support more complex designs such as core reservation by only allowing a single task
to have an affinity for the reserved core and not allowing any of the other tasks to use that core.
Core affinity complements the existing SCA capabilities which govern component deployment.
Candidate DeviceComponents that can host a component are selected by using any allocation
properties, allocation properties, deployment channels, etc. identified by that component. After
those items are evaluated and processed a target ExecutableDeviceComponent is selected. Any
existing affinity preferences that accompany that component are then passed to the
ExecutableDeciveComponent which, if it supports the capability, is responsible for mapping those
requirements to the underlying operating system.

3.1.11 Self-Launching Components

Self-launching PlatformComponents are those which come into existence in a manner other than
being deployed by a DeviceManagerComponent. These components are often associated with plug
and play scenarios, however they could also be employed as part of a routine system startup. Once
a platform component that will be managed by the framework is launched it is subject to all of the
PlatformComponent requirements.

The primary issue to be addressed related to self-launching components is if/how they are
associated with the framework. SCA does not dictate an approach for this situation so a system
designer will need to use an implementation specific approach to associate the two components and
provide an endpoint that the PlatformComponent can use to register. The component registry
location could be provided via approached such as a property, within a designated file or as an
argument to the component’s executable file.

When the component registers, it is responsible for providing a ComponentType argument to the
registercomponent operation. As an SCA component the self-launching PlattormComponent will

40

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

have a companion set of descriptor files (profile). The PlatformComponent will populate the
ComponentType parameter either with information from the profile, it does not necessarily have to
parse the profile, or corresponding information that it received through its execute parameters. If
the PlatformComponent does not populate its allocation properties then the
DeviceManagerComponent with which it registers will satisfy that requirement.

3.2 DESIGN GUIDANCE
3.2.1 CORBA profiles

3.2.1.1 Guidance on the use of Any

On systems with limited resources, the use of the OMG IDL Any data type should be minimized.
The Any data type should not be used within the data path or in situations with demanding
performance requirements. When an Any type must be used, it should be associated with a simple
type. The CF::Properties data type is the only SCA construct that contains an Any data type within
its data structure definition.

3.2.1.1.1 Rationale for restrictions on the use of Any

The Any data type should be avoided due to the significant performance and resource consumption
implications that it may levy on method calls that use them. Many ORB providers supply insertion
and extraction operations for known simple types and transport them without large TypeCodes that
can increase message sizes significantly (in some cases the type information can more than double
the size of the messages). The potential size implications are even greater for complex types, the
CORBA compiler must generate code for insertion and extraction and add it to each component
using the interface as well as adding the type information to each message.

The additional size and processing complexity associated with marshaling and unmarshalling
utilizes resources that could be better directed towards providing application critical capabilities.

It is not necessary to find an ORB that does not support complex types in Any, or to remove the
capability from a commercial product because the majority of resource savings are achieved
because an Application does not use a capability, not from its absence. For example, in user
defined IDL types the Any capability is turned on when the operator is generated by the IDL
compiler and used by the code. However, some ORBs do have the ability to optimize for size by
only including the Any capability when it is linked with an application through the use of a
modular architecture.

3.2.1.2 Guidance on the availability of commercial ORBs implementing these profiles

Initially there may be few, if any, commercial ORBs available that provide an implementation
tailored in accordance with the SCA specified profiles. With few noted exceptions, the Full and
Lightweight CORBA profiles are proper subsets of the CORBA/e Compact profile [3]. This means
that a processing element with sufficient resources could use a CORBA/e Compact ORB, support
nearly all permitted Application features and require minimal porting effort.

3.2.1.3 Use Case for the Lightweight profile

The Lightweight profile is intended for extremely limited processing elements, such as most DSPs,
and assumes an approach for implementing SCA components (ManageableApplication or Device)
that strives to maximize performance and minimize resource utilization. In order to avoid resource
intensive features of the SCA for component management, such as the

41

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

ManageableApplicationComponent’s inherited LifeCycle interface, the Lightweight profile
accommodates partially realized SCA components, Figure 24, or scenarios where the complete
SCA component implementation is split between an extremely limited and a somewhat less limited
processing element.

GPP 1 DSP 1 FPGA 1

Processing Element Processing Element Processing Element

<<MAC>> <<MAC>> <<MAC>> <<MAC>>
B c D F

A

)

\ A A

I:':l Platform Specific Platform Specific Platform Specific
Transport Transport Transport

MAC = ManageableApplicationComponent
Component D is CONTROLLABLE/INTERROGABLE

Figure 24 Lightweight Component in Lightweight profile

It is assumed that the requisite component management functions for the
ManageableApplicationComponent under development are realized on the less limited processing
element and only port implementations (such as traffic data handling) are realized on the limited
processor, Figure 25.

GPP 1 DSP 1 FPGA 1

Processing Element Processing Element Processing Element

<<MAC>> CORBA c <<MAC>> <<MAC>>
B connectivity D F

II":I Platform Specific II":I Platform Specific % Platform Specific
Transport t

Transport Transport
| | |

MAC = ManageableApplicationComponent
Component C contains the realization of a Component B provides port

Figure 25 Component distributed across multiple processing elements

An alternative approach for applications is for an ApplicationControllerComponent to manage a
component directly, i.e. not using a BaseComponent’s port. In that scenario the permitted data
types and method calls are restricted to those necessary for the port implementations. Note that
some current standard APIs such as, Audio Port Device and GPS Device would need to be

42

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

modified to follow these constraints. Coordination between the lightweight and management
portions of a component is outside the scope of this recommendation and not required to use
CORBA.

Components may need to be deployed on even more limited processors such as FPGAs or have
interfaces to other components on such processors, Figure 26.

GPP 1 DSP 1 FPGA 1

Processing Element Processing Element Processing Element

<<MAC>> G¢CORBA <<MAC>> <«<MAC>> F
B cpnnectivity c D

A

Platform Specific :I':l Platform Specific Platform Specific
Transport Ti port Transport

MAC = ManageableApplicationComponent
Component F contains the realization of a Component B provides port
Component F also has additional restrictions on it’s data types

O

Figure 26 Distributed component with FPGA portion

Compatibility will be enhanced in these instances if data types are restricted to those realizable on
such processors. Therefore, components implementing the lightweight profile are encouraged to
avoid using the data types discouraged and marked with * in the table of Attachment 1 to Appendix
E-2 (see reference [4]).

3.2.1.4 Guidance on restriction interface data types

It is recommended that data types be restricted in any interface to modules implemented on
extremely limited processing elements such as FPGAs and most DSPs.

Interfaces to code modules implemented on extremely limited processing elements, such as FPGAs
and most DSPs, whether or not they are implemented in CORBA, are encouraged to refrain from
using the data types marked with * in the Lightweight CORBA profile.

This recommendation is intended to enhance portability of CORBA to non-CORBA
implementations and to ensure that data can be exchanged easily between CORBA and non-
CORBA components.

3.2.1.5 Rationale for CORBA feature inclusion in the profiles

The choice to include CORBA features in the profiles was driven by use cases. Some of these use
cases are listed along with columns comparing Full with minimumCORBA and CORBA/e
Compact in Attachment 1 to Appendix E-2 (see reference [4]).

43

Distribution Statement on the Cover Page applies to all pages of this document.

SCA Specification User’s Guide Version: 4.1<DRAFT>
30 November 2015

3.2.2 SCA Waveform Construction
3.2.2.1 Overview

The SCA component structure contains a collection of building blocks that a product developer can
combine in order to produce a deliverable, e.g. a waveform or service implementation. The pro