Representational

World Modeling

A statistical cell-based map representation that supports unrestricted path
planning and collision avoidance for indoor operations.

by H.R. Everett

he preceding article of this
Z two part series (TRP, Winter
1996, p. 15) examined a very
basic reactive control scheme that
could be used to intelligently direct
the motions of the prototype security
robot ROBART I operating in very
structured and relatively obstacle-free
surroundings. The reactive control
approach couples real-time sensor
information to motor response with-
out the use of intervening symbolic
representations that model the envi-
ronment. The robot could move as
required to any given room simply by
maintaining a relative awareness of
the room inter-relationships along the
hallway, but had no absolute sense of
its own location in the X-Y floorplan.
In addition, reflexive avoidance of
potential obstacles could easily inter-
fere with effective execution of the
navigation algorithm, sometimes with
non-recoverable results.

In this issue we review a simplistic
representational world modeling
approach originally employed on
ROBART II. This much improved
second-generation robot was
equipped with 132 external sensors,
to include a 360-degree navigational
sonar array for initial map generation
and position location, as well as a
collision avoidance sonar array
(Figure 1). A distributed architecture
of 13 on-board microprocessors han-
dled dedicated tasks such as drive
motor, sonar, head position, and
speech control, linked via a serial RF
data link to a desk-top 386-based PC
that performed all high-level tasks
associated with world modeling.

Providing such a model-based navi-
gational capability involves the
implementation of an appropriate

Spring, 1996

map representation, the acquisition of
information regarding ranges and
bearings to nearby objects, and the
subsequent interpretation of that data
in building and maintaining the world
model. Each of these issues will be
treated in some detail in the following
sections.

Selecting a Map

Representation

The simplest map representation is
a two-dimensional array of cells,
where each cell in the array corre-

PASSIVE ACOUSTIC
ARRAY

VIDEO TRANSMITTER

MICROWAVE MOTION
DETECTOR

sponds to a square of fixed size in the
region being mapped. Free space is
indicated with a cell value of zero; a
non-zero cell value indicates an
object. The most compact form of a
cell map consists of one bit per cell
and thus indicates only the presence
or absence of an object, such as the
example presented by Balch (1996)
in the last issue of The Robotics
Practitioner.

By using multiple bits per cell,
additional descriptive information
can be represented in the map, to

HIGH RESOLUTION
CCD VIDEO CAMERA

DOORWAY PENETRATION
SENSOR ARRAY

PROGRAMMABLE
PROXIMITY SENSOR

POSITIONABLE
ULTRASONIC SENSOR

NAVIGATIONAL
ULTRASONIC ARRAY

SMOKEDETECTOR —__ === _0 .0 ' AUDIO SPEAKER
‘O// P
/ H

PASSIVE INFRARED _-=
MOTION DETECTORS

OPTICAL MOTION ..---"""‘!"'f-:

DETECTORS

RIGHT REAR
ACCESSDOOR

TOXIC GAS
SENSOR ™=,

QUICK RELEASE
PIN

FLOOR SENSOR

RIGHT DRIVE
WHEEL

NEAR-INFRARED

PROXIMITY SENSORS

a ULTRASONIC

TRANSDUCERS

PASSIVE INFRARED
MOTION DETECTOR

e/ COLLISION AVOIDANCE
ULTRASONIC ARRAY

NEAR-INFRARED
PROXIMITY SENSORS

FORWARD FLOOR
SCANNER

TACTILE
BUMPERS

/"
/(1/' FLOOR
SENSOR

\ RECHARGING

PROBES

Figure 1: Location of the various security, navigation, and collision
avoidance sensors employed on ROBART Il (1982-1992).

The Robotics Practitioner

31

include the probability of a given square being occupied.
This feature is useful when the precise locations of objects
(and even the robot itself) are unknown, Memory usage is
independent of map content, so cluttered surroundings are
not a problem. The resolution of the map is only as good as
the square size, however, and doubling the resolution
quadruples the memory requirements.

A slightly more sophisticated and elegant approach is to
use a quadtree representation (Fryxell, 1987). The world
map begins as a square which is in turn subdivided into four
smaller squares. Each of these squares is in turn recursively
subdivided (down to the map resolution if necessary) until
the region occupied by the square is homogeneous (all
object or all free space). For an uncluttered environment, a
substantial savings in memory usage is achieved with a
decrease in find-path execution time, since the effective map
size is smaller. In highly inhomogeneous environments,
however, memory usage can increase beyond that of the
simple cell map, thus negating the primary advantage of the
quadtree.

A third technique uses polyhedra and curved surfaces or
geometric primitives to represent objects in the workspace
(Lozano-Perez, Wesley, 1979; Brooks, Lozano-Perez,
1983). Such maps are quite compact, and with no inherent
grid, the locations of objects can be more precisely entered

p

Figure 2: The last known location of the free-stand-
ing recharging station is represented in the world
model as a special case of a transient object.

32 The Robotics Practitioner

into the model. These maps are also easily extended into

three dimensions, in contrast to a cell-based map where

memory cost would be prohibitive. Updating the map with
real-world data is difficult, however, as it is hard to accurate-
ly glean polygonal information from inexpensive sensors
mounted on a mobile robot. Statistical uncertainty of the
existence of objects is difficult to implement as well.

Brooks (1983) has devised a scheme based on generalized
cones. Rather than map both obstacles and free-space, only
the areas the robot can freely traverse are mapped; the robot
is required to stay within these freeways. Paths can be quick-
ly found using this method and do not “hug” obstacles as is
typically the case with many other algorithms, thus decreas-
ing the likelihood of collisions due to cumulative dead reck-
oning errors. This algorithm does not work well in cluttered
environments, however, and decomposing free space into
generalized cones can be computationally expensive.

Following an examination of these and various other alter-
natives, a cell-based map was adopted for use on ROBART

IT for a number of reasons (Everett, et al., 1990):

* The area described by the map is a bounded space (i.e., a
building interior), where a relatively coarse grid (3-inch
resolution) can be used.

= Objects of unknown configuration are easily added. This
feature is of particular importance since low-resolution
ultrasonic sensors are used for map updating.

* The traversibility of a square can be statistically represent-
ed and easily changed.

* Unique coding of predefined entities (i.e., doorways,
recharging station (Figure 2), recalibration sites) is easily
supported.

* A simple Lee maze router (Lee, 1961) can be used for path
planning.

* The map can be accessed and updated quickly.

Acquiring and Incorporating Range Data
Real-time range data acquired by both the navigational

and collision avoidance sonar arrays (see again Figure 1)

must be appropriately entered into the world model as the

robot is moving. This seemingly trivial operation turns out
to be more difficult than expected due to problems associat-
ed with the operation of ultrasonic ranging systems in air,
the subject of an earlier article in the Fall issue of The

Robotics Practitioner (Everett, 1995b). Typical problems

include temperature dependence, which has an impact on

range accuracy, and beam dispersion, which contributes to
angular uncertainty. Specular reflection from target surfaces
can cause additional errors, and adjacent sensor interaction
requires the transducers in the array be individually fired
rather than simultaneously. Finally, the slow speed of sound
in air results in marginal update rates, as well as the need for
successive coordinate transformations to account for dis-
placement due to robot motion during the sequential firing

of all transducers in the array (Everett, 1985).
Consequently, the effective interpretation and use of inher-

ently questionable sonar data is critical to achieve a reason-

ably accurate representation of surrounding obstacles.

Moravec and Elfes (1985) of CMU describe a scheme for

mapping sonar range returns using probability distribution

Spring, 1996

functions. For each sensor reading,
the assigned probability of an object
being at the exact indicated range and
bearing is considered high, and
decreases radially around that point
according to a pre-specified distribu-
tion function. In addition, a second
distribution function characterizes the
“emptiness” of cells between the sen-
sor and the returned range. Points
near the sensor have a high probabili-
ty of being unoccupied, with decreas-
ing probability for those points closer
to the indicated range or off the beam
axis. The technique was applied to a
map where the state of occupancy for
all cells is initially marked as
unknown. The CMU robot was
moved to various vantage points in
the room, with several sonar readings
taken at each point and averaged to
create the probability map.

Fryxell (1987) as well as
Beckerman and Oblow (1988) also
used probability schemes for map-
ping sonar data. Fryxell took sonar
readings (modeled as rays) from dif-
ferent places in the environment and
then constructed two arrays, one
observing the number of times each
cell was “hit,” and the other observ-
ing each time a cell was “missed.” A
voting procedure combined both
maps to create the final map, with
each cell marked as either occupied
or unoccupied.

Beckerman and Oblow (1988) used
a similar method but modeled the
sonar beam as a cone subtending an
angle of 18 degrees. The reduced
effective beamwidth (18 versus 30
degrees) is achieved by employing a
phased array consisting of four trans-
ducers (Everett, 1995a), the array
being sequentially repositioned
mechanically to achieve the desired
coverage. As with Fryxell (1987), the
robot was moved to various vantage
points in the room to make static
sonar observations. These data were
saved in auxiliary buffers and used to
update a cumulative map, with each
cell labeled as conflicting, unknown,
occupied, or empty. (A conflicting
cell occurs when one or more sonar
readings intersect such that one
marks the cell as occupied while the
other marks it as empty.) After all

Spring, 1996

nonconflicting data had been inte-
grated into the cumulative map, con-
flicting cell status was resolved
through pattern analysis of the origi-
nal data. This technique generated
maps similar to those created by
Fryxell's method, but with better res-
olution even though fewer sonar
readings were taken.

A faster and less computationally
expensive variation of these statistical
representation schemes was imple-
mented on ROBART II. By using a
simplified probability distribution and
range-gating fixed arrays of sonar
sensors, the mapping process can
take place in real time while the robot
is in motion. Two different mapping
procedures are used, one for creating
the initial map and another for updat-
ing the map during the execution of a
path. In addition, two distinct classes
of objects are defined: 1) permanent
objects, which are essentially fixed in
place, and, 2) transient objects,
which tend to move around.

The world model contains position-
al information about all the known
objects in the environment, and may
be either robot or human generated,
or a combination of both. In either
case, only relatively immobile (hence
the term permanent) objects (i.e.,
walls, desks, filing cabinets) are
recorded during the initial map gen-
eration procedure. An observed cor-
relation between the height of an
object and its degree of long-term
positional stability heavily influenced
the vertical placement of the naviga-
tional and collision avoidance sonar
arrays during construction. In other
words, the taller an object, the more
likely it was to remain stationary,
hence the navigational array was
placed as high as possible (see again
Figure 1).

Objects likely to be transitory in
nature (i.e., chairs, trash cans, carts)
are not recorded in the original map
and present a problem during actual
path execution, giving rise to the
need for an effective collision avoid-
ance capability. For reasons cited
above, the collision avoidance sen-
sors function best when situated near-
er to the floor surface. Special cases
of transient objects include door-

The Robotics Practitioner

ways, which can be open or closed,
and the robot’s battery recharging sta-
tion shown earlier in Figure 2.
Initial Map Generation. To gener-
ate the initial map, the robot moves
very slowly around the room bound-
aries while firing all 24 transducers in
the upper navigational array. The
sonar beams are modeled as rays and
range-gated to six feet. If the indicat-
ed distance is less than six feet, the
probability value assigned to the cell
corresponding to that location in the
map is incremented once. After the
room had been completely traversed,
the cell values are thresholded using a
special Map Editor utility to remove
noise and achieve the best map defini-
tion. The resulting map contains the
known permanent objects in the room
as seen by the robot and can next be
manually edited to add additional fea-
tures, such as hidden lines, doorways,
etc. Each object in the map is then
automatically “grown” by half the
width of the robot in order to model
the robot as a dimensionless point
during subsequent find-path opera-
tions (Lozano-Perez, Wesley, 1979).
Free space is represented by an
array value of zero (Table 1) and is
shown in white. Permanent objects
are displayed as light gray, whereas
transient objects are displayed as
black. The dark gray area surrounding
each permanent object is the
“growth” which allows the robot to be
modeled as a point. Permanent
objects and their associated growth
are thus created under human supervi-
sion and cannot be later erased by the
robot during path execution.

Modeled Entity Cell Value
Free Space 0
Transient Object 1-16
Current Location(START) 238
Destination Goal (DEST) 239
Recharging Station 250
Doorway (open) 252
Permanent Object Growth 253
Permanent Object 255

Table 1: Assigned cell value for
various entities represented in the
world model. Range of values (1-
16) for transient objects reflects
the probability of cell occupancy.

33

Constructing a map from the
ground up (no pun!) using the Map
Editor can be tedious and time con-
suming. Often, however, a CAD
drawing of the building has already
been created. A translator was there-
fore written to convert an AutoCAD™
Drawing Interchange File into a bit-
mapped model that the path planner
can use. The only user input required
is the desired cell size (resolution).
Special-case items such as doors,
recharging stations, and recalibration
sites (see again Table 1) are manually
entered after the conversion using the
Map Editor as before, but any perma-
nent entities such as structural walls
and furniture are dealt with automati-
cally.

Dynamic Map Maintenance. A
different mapping approach is used
when entering data from the collision
avoidance sonars into the world
model during actual execution of a
path segment: only the center five
transducers in the array are activated.
If a given sensor return shows an
object within five feet, the certainty
value assigned to the cell at that indi-
cated location is incremented twice as
shown in Figure 4, up to a specified
maximum (typically 16). In addition,
the probability values assigned to
each of the eight neighboring cells
are incremented once to take into
account uncertainties arising from the
dispersion angle of the ultrasonic
beam. Cells previously marked as
being permanent objects or growth,
however, are left untouched since
they will always be avoided by the
path planning search algorithm.

&

Figure 5: Probability distribution showing the per-
ceived location of transient objects in the environment.
Note representation of chair at A.

34

In addition, each time a sonar range
return is processed, all the cells with-
in a cone ten degrees wide and four
feet long (or less if an object appears
within four feet) have their assigned
values decremented by one. This
action, first introduced by Moravec
and Elfes (1985), effectively erodes
objects no longer present and also
serves to refine the representation of
objects as the robot moves through a
series of new perspectives. Transient
objects are erased from the map at a
slower rate than they are entered, so
the system tends to err on the side of
not running into obstructions. As
with object addition, permanent
obstacles and growth are left
untouched.

Figure 5 shows a three-dimensional
bar chart depiction of such a map,
where the height of each bar is pro-
portional to the probability that the
given cell is occupied. The probability
cluster at point A marks the location
of a chair which had been placed at
the right-hand end of the room. The
robot was told to execute a rectangu-
lar path, causing it to completely cir-
cumnavigate the chair. After the
robot’s first pass around the room, the
chair was moved to point B and the
path repeated, with the resulting prob-
ability distribution as shown in Figure
6. Note the robot quickly recognizes
the new location of the chair, while
the probability of an object being pre-
sent at point A has been significantly
decreased. In addition, two more
objects can be seen at points C and D.
Objects which do not change position
over successive viewings are further
reinforced until their associated prob-
ability functions saturate.

o
¥
[L

Figure 4: For any objects detected
within five feet, the certainty value
assigned to the cell at the indicated
sonar range and bearing is incre-
mented twice, while the eight neigh-
boring cells are each incremented
once.

Path Planning
There are a number of operations

the path planning algorithm must

address to get the robot from point A

to point B:

» Find a clear path to the desired des-
tination.

* If no path exists, then return a value
of FALSE to the calling program.

* Retrace the search to create a list of
straight-line segments describing
the path.

* Create the necessary movement
commands and execute the path.

» If the path is successfully executed
then return successful status.

» Otherwise, plan a new path to the
destination.

The original path planner was based
on the Lee (1961) path connection
algorithm with the cell coding
enhancements suggested by Rubin
(1974). The basic search algorithm
begins by “expanding” the initial cell
corresponding to the robot’s current
position in the floor map (i.e., each
unoccupied neighbor cell is added to

Figure 6: Probability distribution after moving chair

from location A to location B.

The Robotics Practitioner

Spring, 1996

the expansion list). Then each cell on
the expansion list is expanded. This
process continues until the destina-
tion cell is placed on the expansion
list, or the list becomes empty (in
which case no path exists). Details
of these operations are discussed in
the following subsections.

Finding a Path. As discussed, the
world map contains a byte for each
grid square in the room, where the
size of a square can range from one
inch up to several feet, depending on
the room size and desired resolution.
The path planner first makes a work-
ing copy of the map, in which the
Find-Path routine stores two special
bytes (see again Table 1), one indi-
cating the current location of the
robot (START) and the second indi-
cating the desired destination
(DEST). During the search process
the algorithm looks for the floor cell
containing the DEST byte, while dur-
ing the backtrack process it looks for
the START byte.

Information about the source cell
(i.e., START) such as X-Y location
and cost is then put onto a frontier
list consisting of those points on the
outer edge of the search envelope
that are candidates for the expansion
process, to be discussed below.
Putting the source cell on the frontier
list seeds the algorithm so it has a
cell to expand. The algorithm then
enters a loop which terminates only
when there are no more cells on the
frontier list, or when a path has been
found. (If the frontier list is empty,
then no path is possible and the
search fails.)

The first step inside the loop is to
find all the cells on the frontier list
with minimum cost and put them on
the expansion list. When a cell is
placed on the expansion list, a value
(arrow) indicating the direction to the
parent cell is stored in the map array.
Once the destination cell has been
reached, retracing the path involves
merely following the directional
arrows back to the source. During
this process only those points repre-
senting a change in direction (i.e.,
inflection points) are recorded, and
the entire path is completely speci-
fied by the straight line segments

Spring, 1996

connecting these inflection points.
The resulting path is guaranteed to be
the minimum distance path.

The minimal distance path, howev-
er, is not necessarily the “best™ path.
Sometimes it is more desirable to
minimize the number of turns or to
maximize the distance from obsta-
cles, for example. The search strate-
gy can be altered accordingly by
assigning a cost to each cell prior to
adding it to the expansion list; only
the minimum cost cells are then
expanded. This is known in the liter-
ature as an A* search (Winston,
1984). The cosr of a cell is typically
some computation of how expensive
it is to look at a certain cell. In a typi-
cal A* search, the cost is set equal to
the distance already traveled from the
starting point to the current cell, plus
the straight line distance from the
current cell to the destination cell.
This value is guaranteed to be less
than or equal to the actual total dis-

When selected, each cell on the
expansion list is first checked for pos-
sible expansion, as the only valid can-
didates for expansion are those cells
whose assigned byte in the floor map
is zero. If the assigned certainty
value is not zero, the cell may be
occupied by a transient obstacle
detected by the robot’s sensors. In
such a case the certainty value is sim-
ply decremented and the cell put back
onto the frontier list for later expan-
sion. This technique is used to bias
the algorithm towards a clear path (if
one exists) in preference to a cluttered
path, as decrementing the non-zero
certainty values slows down the
expansion process in the presence of
perceived obstacles. If no clear path
is found, however, the robot may still
be able to traverse the cluttered path.
This ability to eventually “eat
through” the representation of tran-
sient objects assists the path planner
in finding a path even in the presence

“The minimal distance path is
not necessarily the best path.”

tance from the source to the destina-
tion. This particular cost function
tends to make the search expand in a
direction towards the goal, which
usually decreases the search time.

The expansion process begins once
the minimum-cost cells have been
transferred from the frontier list to
the expansion list. The expansion
process looks at all the neighbors of
each cell on the expansion list. Each
unoccupied neighbor that is not on
either the expansion or frontier list is
placed on the frontier list. If the desti-
nation cell is reached (as will be dis-
cussed later), a solution path has been
found and the algorithm terminates,
otherwise termination occurs when
all cells on the current expansion list
have been expanded. A value of
FALSE is returned in this latter case,
indicating the destination was not
reached during the current expansion
and further searching of the new fron-
tier list (as updated by the expansion
process) will be necessary.

The Robotics Practitioner

of faulty or inaccurate sensor data.

If the current floor map cell value is
zero, indicating the cell can be
expanded, then each of the cell’s four
orthogonal neighbors (i.e., north, east,
south, and west) is examined to see if
it is occupied or unoccupied. If a
neighbor cell contains the special byte
DEST, a path has been found, the X-
Y location of the cell is saved, and
TRUE status is returned. Otherwise,
if the cell is unoccupied, it is placed
on the frontier list. (If occupied it is
simply ignored.) Finally, information
used by the backtracking routine
(basically an arrow indicating the
direction to the neighbor’s parent) is
stored in the floor map cell corre-
sponding to the current neighbor.
Control is then returned to the top of
the loop, and the expansion process is
repeated with the updated frontier list
as previously discussed.
Backtracking. Once the desired
destination cell has been found, the
backtracking process (also called

35

retracing or segmentation) creates the

list of path segments that describe the

path, based on the contents of the
current floor map following the

Find_Path operation. The procedure

is very simple. Starting with the des-

tination cell, the following steps are
performed:

1. The direction arrow of the current
cell is followed to the adjoining
(parent) cell.

2. If the new cell contains START,
then the algorithm is done.

3. If the direction arrow of the new
cell is the same as the current
arrow, the new cell becomes the
current cell and the routine returns
to step 1.

4. Otherwise the direction has
changed, the current X-Y coordi-
nate must be added to the path seg-
ment list, and the segment counter
updated.

The output of the backtracking rou-
tine is thus a list of X-Y coordinates
describing the waypoints through
which the robot must pass in order to
reach the destination.

Path Execution. Once a path seg-

ment list has been specified, the robot

must follow the route described to
reach the desired goal. For sake of
simplicity, each segment of the path
is executed individually by turning

ated at Point A.
36

Figure 7: Photo of the area diagramed in Figu.

the robot to the required heading and

then performing a straight-line move

of the needed distance. Control is
then passed to the segment execution
routine. (In subsequent robots, con-
secutive straight-line path segments
are joined by filet arcs to facilitate
continuous motion.) This procedure
returns a status condition indicating
whether or not the robot was able to
successfully execute the segment. If
successful, then the next path seg-
ment (if any remain) is executed.

During segment execution the path

planner monitors status packets sent

back by the robot, to include:

* A move-complete report indicating
the robot has finished moving the
desired distance.

* An obstacle report indicating the
robot has stopped because an obsta-
cle is in its way.

* A dead-reckoning report of current
position.

A collision-avoidance sonar packet
updating the current map represen-
tation.

The software loops until one of the
return conditions (i.e., move-complete
or obstacle) is met.

Collision Avoidance

For a mobile robot to be truly
autonomous, it must cope with the
classic problem of avoiding an unex-

- i

re 8 with the robot situ-

The Robotics Practitioner

pected, unmapped obstacle. Initial
approaches involved the development
of a second localized relative map
which represented the locations of
objects detected in front of the robot
while traversing a path segment
(Harrington, Klarer, 1987; Crowley,
1985). When range to an obstacle fell
below a critical threshold, robot
motion was halted and an avoidance
path around the obstacle was planned
using the smaller relative map. In
this approach, however, the relative
map is very transitory in nature, cre-
ated at the beginning of each move
and discarded at the end. The only
information in the map is obtained
from on-board range sensors while
the robot is in motion. Since there is
no memory of previously encountered
obstacles, no learning curve exists,
and several avoidance maneuvers
may be required to complete the path
if the area is congested.

Another possibility would be to
actually encode the position of newly
detected transient objects into the
original “absolute” map while a path
is being executed. This scheme has
the advantage that all prior informa-
tion learned about the environment is
also available. Thus, in addition to
avoiding newly detected objects, the
path planner also knows about previ-
ously modeled obstacles which may
be out of sensor range or occluded in
some way. However, unlike the first
method, this technique tends to pro-
duce cluttered maps over a period of
time, due to: 1) the transient nature
of some objects, 2) erroneous sensor
readings, and 3) uncertainty in actual
robot position and heading.
Eventually the workplace may appear
impassable as far as the model is con-
cerned.

A modified approach was adopted
in the case of ROBART II to combine
the best of both the relative and
absolute schemes. Object space is
subdivided into the two categories of
permanent and transient objects as
previously discussed. All collision
avoidance sensor information is sta-
tistically represented in the absolute
map, based on the number of times
something was seen at a given cell
location. Conversely, when a previ-

Spring, 1996

Figure 8: Overlaid circles and rectangles show the
actual locations of as yet undetected transient objects.

i

ously modeled object is no longer detected at its original
position, the probability of occupancy for the associated cell
is decreased; if the probability is reduced to zero, the cell is
again regarded as free space.

On completion of a path, all the transient cell probabilities
are decreased by a small amount. This forced “amnesia”
helps to eliminate sensor noise, and over a period of time
causes all transient objects to be erased from areas seldom
visited. This feature is advantageous in dynamic environ-
ments where the probability that the position of trransient
objects has changed is proportional to the amount of elapsed
time since that object was last mapped by the robot.

The distinction between permanent and transient objects is
an important feature that is largely responsible for the robust
nature of the modeling scheme. Permanent objects remain in
the model as a baseline from which to restart if the model
for some reason becomes overly congested and must be
flushed; only the transient objects are deleted. In addition,
the path planner will always avoid permanent objects and
their associated growth, whereas if necessary, the planner
can penetrate the temporary growth surrounding transient
objects in an attempt to find a path. This ability was found
to be necessary, because in congested environments, the
growth operation often closes off feasible paths due to inac-
curacies inherent in the range data. The cost of traversing
transient growth increases linearly in the direction of the
perceived object location to minimize chances of a collision.

For purposes of illustration, we will review step by step
the actions of the path planner and subsequent motions of
the robot in executing a simple path through an obstructed
area. A photograph (Figure 7) of the region reveals the pres-
ence of several unmapped obstacles; the positions and out-
lines of each have been graphically overlaid on top of the
map in Figure 8 for sake of convenience. As the path plan-

Figure 10: Revised path from robot's new position to
accommodate the discovery of the cart.

Spring, 1996

The Robotics Practitioner

ssasaassnas] (SSHRER

Figure 9: Avoidance maneuver generated to clear
the row of cylinders shown in Figure 7.

ner initially has no knowledge of these objects, the resulting
path is a straight line from point A to point B through the
area occupied by the cylinders.

During the execution of this path segment, the collision
avoidance sonar array detects the row of cylinders and
begins altering the cell probabilities to reflect the perceived
obstructions. When the robot has advanced to within the crit-
ical collision threshold (22 inches), forward motion is halted.
At this point all the newly mapped objects are temporarily
grown (for maneuvering clearance) in preparation for the
path planning operation. This transient growth is removed
after the new path has been found (Figure 9). The black
areas represent the fransient obstacles detected during the
course of the first move. Upon executing the revised path,
the robot discovers the cart and plans another avoidance
maneuver (Figure 10). Upon reaching its destination B
(Figure 11), the robot plans a path back to the original start-
ing point A, this time avoiding the newly discovered obsta-
cles.

Summary
This article has reviewed a very basic representational world
modeling capability implemented on an autonomous mobile
security robot. A number of simplifications were made to
facilitate robust operation on a desktop 386-based PC:
¢ A distinction was made between permanent and fransient
objects.
* All objects were appropriately “grown” to allow the robot to
be modeled as a dimensionless point.
* Objects were treated as their projection on the X-Y plane.
* An abbreviated statistical representation was employed to
compensate for errors in both sensor data and robot position.
* Robot motion was restricted to point-to-point moves.
The principle difficulty associated with such a representa-
tional world modeling scheme is accumulated dead-reckoning

Figure 11: Return path generated by the Planner
avoids the previously discovered objects.

37

errors. As the actual position and heading of the robot devi-
ate from perceived values, the data entered into the absolute
representation becomes increasingly inaccurate, until the
model is eventually rendered useless. The ability to “flush”
the map under these conditions by erasing all transient-object
representations facilitates recovery, assuming some means is
also provided to re-reference the robot. For more informa-
tion on this subject, refer to Sensors for Mobile Robots
(Everett, 1995a); dead-reckoning techniques and error
sources are discussed in chapter 2, while the specifics of
acoustical, optical, and RF position location techniques are
presented in chapters 14-16. A very detailed treatment of
more sophisticated navigational techniques is presented in
Navigating Mobile Robots (Borenstein, et al., 1996).

About the Author

Commander H. R. (Bart) Everett, USN (Ret.), is the former
Director of the Office of Robotics and Autonomous Systems
at the Naval Sea Systems Command, Washington, DC. He

References

currently serves as Technical Director for the tri-service
Mobile Detection Assessment Response System (MDARS)
robotic security program under development at the Naval
Command Control and Ocean Surveillance Center, San
Diego, CA. Active in the field of robotics research for over
20 years, with personal involvement in the development of 11
mobile systems, he has more than 80 technical papers and
reports published and 19 related patents issued or pending.
He serves on the Editorial Board for Robotics and
Autonomous Systems magazine and on the Board of
Directors for the International Service Robot Association,
and is a member of Sigma Xi, the Institute of Electrical and
Electronics Engineers (IEEE), and the Association for
Unmanned Vehicle Systems International (AUVSI).
everett @nosc.mil
http://www.nosc.mil:80/robots/index.html

This article was adapted from “Modeling the Environment
of a Mobile Security Robot,” (Everett, et al., 1990).

Balch, T., “Grid-Based Navigation for Mobile Robots,” The Robotics Practitioner, pp. 7-10, Winter, 1996.

Beckerman, M., Oblow, E.M., “Treatment of Systematic Errors in the Processing of Wide Angle Sonar Sensor Data for
Robotic Navigation,” Oak Ridge National Laboratory Technical Memo, CESAR-88/07, February, 1988.

Borenstein, J., Everett, H.R., Feng, L., Navigating Mobile Robots, ISBN 1-56881-058-X, A.K. Peters, Ltd., Wellesley, MA,

1996.

Brooks, R.A., “Solving the Find-Path Problem by Good Representation of Free Space,” IEEE Transactions on System, Man,

and Cybernetics, Vol. SMC-13, No. 3, 1983.

Brooks, R.A., “A Robust Layered Control System for a Mobile Robot,” IEEE Journal of Robotics and Automation, Vol.

RA-2, No. 1, pp. 14-20, 1986.

Brooks, R.A., Lozano-Perez, T., “A Subdivision Algorithm in Configuration Space for Findpath with Rotation,”
International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, 1983.
Crowley, J.L., “Navigation for an Intelligent Mobile Robot,” IEEE Journal of Robotics and Automation, Vol. RA-1, No. 1,

March, 1985.

Everett, H.R., “A Multi-Element Ultyrasonic Ranging Array,” Robotics Age, pp. 13-20, July, 1985.

Everett, H.R., Gilbreath, G.A., Tran, T.T., Nieusma, J.M., "Modeling the Environment of a Mobile Security Robot," NOSC
Technical Document 1835, Naval Oceans Systems Center, San Diego, CA, June, 1990.

Everett, H.R., Sensors for Mobile Robots: Theory and Application, ISBN 1-56881-048-2, A.K. Peters, Ltd., Wellesley,

MA, June, 1995a.

Everett, H.R., “Understanding Ultrasonic Ranging Sensors,” The Robotics Practitioner, pp. 27-38, Fall, 1995b.
Everett, H.R., “Autonomous Navigation on a Shoestring Budget,” The Robotics Practitioner, pp. 15-23, Winter, 1996.
Fryxell, R.C., “Navigation Planning Using Quadtrees,” SPIE Mobile Robots II, Cambridge, MA, pp. 256-261, November,

1987.

Gilbreath, G.A., Everett, H.R., “Path Planning and Collision Avoidance for an Indoor Security Robot,” SPIE Mobile Robots

II1, Cambridge, MA, pp. 19-27, Novemeber, 1988.

Harrington, J.J., Klarer, PR., “SIR-1: An Autonomous Mobile Sentry Robot,” Technical Report SAND&7-1128, UC-15,

Sandia National Laboratories, May, 1987,

Lee, C.Y., “An Algorithm for Path Connections and Its Applications,” IRE Trans. Electron. Comp., Vol. EC-10, pp. 346-

365, September, 1961.

Lozano-Perez, T., Wesley, M.A., “An Algorithm for Planning Collision-Free Paths Among Polyhedral Obstacles,”
Communications of the ACM, Vol. 22, No. 10, pp. 560-570, 1979.

Moravec, H. P., Elfes, A., “High Resolution Maps from Wide Angle Sonar,” Proceedings of the 1985 IEEE International
Conference on Robotics and Automation, St. Louis, MO, pp. 116-121, March, 1985.

Rubin, F., “The Lee Path Connection Algorithm,” IEEE Transactions on Computers, Vol. C-23, No. 9, pp. 907-914,

September, 1974.

Winston, P.H., Artificial Intelligence, Addison-Wesley, Reading, MA, pp. 101-114, 1984,

38 The Robotics Practitioner

Spring, 1996

